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EXECUTIVE SUMMARY

Atmospheric ducts occur when the vertical refractivity profile has a

negative gradient. Such ducts occur frequently in many parts of the world,

and depend on weather conditions. In an atmospheric duct environment,

electromagnetic energy may be propagated with little attenuation relative to

free space over distances of hundreds of kilometers, thereby greatly

increasing the potential for interference to communications and radar

systems. Also, for a radar system, the coverage can be altered.

The likelihood of experiencing such a field enhancement is greater at

higher radio propagation frequencies. Previously available computer models

for determining ducted fields were limited in the frequencies and duct heights

they were capable of considering. A mathematical model, called DUCT, has thus

been developed to predict electromagnetic field levels in a duct environment

for ducts at any height in the troposphere, and for propagation frequencies

through SHF.

The DUCT model is based on a horizontally homogeneous waveguide-mode

formulation, which was developed utilizing Fourier transform formalism.

Numerical difficulties encountered by previous investigators have been

overcome by the use of a unique mathematical formulation that (a) assures

linear independence, even in a numerical sense, of the homogeneous form of the

governing differential equation; and (b) provides flexibility for judiciously

choosing the particular solution to the inhomogeneous form of this

differential equation. In addition, criteria have been developed for

associating specific types of modal field contributions with particular

portions of the eigenvalue locus for the atmospheric waveguide, thereby

providing the potential for increased computational efficiency.

Predictions of the DUCT model were compared with measurements at beyond-

line-of-sight distances in both surface and elevated duct environments at

frequencies between 65 MHz and 3.3 GHz. It appears to be the first model

capable of predictions that compare favorably (within a few dB) with

iii
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measurements performed i.a an elevated duct environment at frequencies as high

as 2201 MHz.

The effects on tho fields in a duct environment, as a function of duct

height, duct size, source height, observer height and propagation frequency,

were ascertained by exercising the DUCT model. Predictions of fields in the

presence of more than one duct in the atmosphere are also discussed.

The DUCT program is deemed to be a valid model for predicting and

studying beyond-line-of-sight fields in a tropospheric duct environment, and

it provides prediction capabilities for certain cases that could not be

adequately treated by previously existing models.

iv
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PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department

of Defense facility, established to provide advice and assistance on

electromagnetic compatibility matters to the Secretary of Defense, the Joint

Chiefs, of Staff, the military departments and other DoD components. The

center, located at North Severn, Annapolis, Maryland 21402, is under the

policy control of the Assistant Secretary of Defense for Communication,

Command, Control, and Intelligence and the Chairman, Joint Chiefs of Staff, or

their designees, who jointly provide policy guidance, assign projects, and

estabilsh priorities. ECAC functions under the executive direction of the

Secretary of the Air Force and the management and technical direction of the

Center are provided by military and civil service personnel. The technical

support function is provided through an Air Force-sponsored contract with the

IIT Research Institute (IITRI).

To the extent possible, all abbreviations and symbols used in this report

are taken from American National Standard ANSI (Y10.19 (1969) "Letter Symbols

for Units Used in Science and Technology" issued by the American National

Standards Institute, Inc.

Users of this report are invited to submit comments that would be useful

in revising or adding to this material to the Director, ECAC, North Severn,

Annapolis, Maryland 21402, Attention: XM.
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SECTION 1

INTRODUCTION

BAC KGROUND

Duct Phenomena

It is known that the index of refraction, n, of the troposphere varies

with altitude. In a "standard" atmosphere, n decreases with increasing height

above the ground, approaching unity as the altitude increases. At sea level,

the value of n is generally in the neighborhood of 1.000301. Usually it is

more convenient to use the quantity called "refractivity" than it is to use

the index of refraction. The refractivity, N, is related to n through the

relationship:

N = (n-i) x 106

Therefore, the refractivity of the troposphere is approximately 301 at sea

level and approaches 0 as the altitude increases.

For modeling purposes, it is often more convenient to consider Ihe earth

as flat and to compensate for earth curvature through an "adjustment" of the

refractivity. This adjustment is accomplished by adding a term to N which,

because of Snell's law, would cause a ray to bend in such a way that its

height above the "flat earth" at each point would be the same as that for a

ray in an "unadjusted" refractivity environment over a curved earth. This new

refractivity is called the "modified refractivity", M, and is given as:

M N +- x 6

a
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where

a = the radius of the earth.

z = the height above the ground.

For a standard atmosphere, M increases with increasing height as shown in the

left-hand portion of Figure la.

Using a geometrical optics representation (ray tracing), the right-hand

portion of Figure la illustrates the manner in which energy would be radiated

from a source (e.g., a transmitting antenna) in a refractivity environment

characterized by the left-hand figure. In the illustration, r is the

horizontal distance along the ground. The rays shown are bent in accordance

with Snell's law, which states that a ray traced from a medium of lower

refractivity to a medium of higher refractivity will bend toward the normal to

the interface of the two media. Similarly, a ray traced from a medium of

higher refractivity to a medium of lower refractivity will be bent away from

the normal to the interface. In this case, the normal to the "interface" is

in the z-direction, and the rays in Figure la are bent accordingly.

Notice that no energy reaches point R, far from the source, because R is

located in the flat-earth representation at a point that would be beyond the

horizon in the curved-earth representation.

The situation depicted above assumed a "standard" atmosphere. Now

consider a case for which part of the M versus z profile changes directions,

such as the situation shown in Figure lb. Such a situation can be caused by

anomalous weather conditions. In this case, a portion of the rays emanating

from the source will, in accordance with Snell's law, be bent in a manner that

will confine them to remain within a well-defined "layer" of the atmosphere.

This layer is referred to as a "duct". Under certain conditions, waves can

propagate within a duct to great distances (i.e., to beyond-line-of-sight

distances) with little or no attenuation relative to free-space levels.

2
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The upper boundary of the duct is the height at which the modified

refractivity gradient (i.e., the ratio of the change in M to the change in z)

changes from a negative value to a positive value. This is shown as point A

in Figure 1. The lower boundary of the duct is determined by dropping a

vertical line from point A in the figure. If the vertical line intersects the

profile, the value of z at that point of intersection is the lower boundary of

the duct and the duct is said to be "elevated." For the case shown in Figure

1b, the duct will extend from the height of point B to the height of point

A. If, on the other hand, the modified refractivity profile were such that

the vertical line reached the ground without intersecting the profile curve,

the duct would be called a "surface duct" or a "ground-based duct."

Energy in a duct may be propagated with little attenuation relative to

free-space over distances of hundreds of kilometers and may subsequently

interfere with existing communications links. In order to predict whether

such interference will take place, information is required about the

characteristics of any ducts that are present and the effects of these ducts

on the propagated fields. Unfortunately, it is nct possible to predict in

advance the occurrence of a duct at a particular time and in a given region.

However, statistical data is available on the occurrence of elevated and

surface ducts in different months and in different regions of the world.

Reference I also contains statistical data related to the characteristics of

these ducts. In general, the percent of occurrence of ducts can vary from 0-

60% depending on the region and time of year. Therefore, it would be expected

that meaningful statistical data can be obtained for the propagated field

strengths observed in a duct environment. Tb accomplish the determination of

field strengths, the statistical duct occurrence data would be integrated with

a "deterministic" model that calculates the field strength when the duct

characteristics are known. The goal of this study was to develop such a

deterministic model.

Ortenburger, L. N., Lawson, S. B. and Miller, G. K., Radiosonde Data

Analysis Summary Maps of Observed Data, GTE Sylvania, Inc., December 1978.

4
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Computational Capabilities

The existence of ducts and their effects on electromagnetic wave

propagation have been recognized for a long time. Documentation of the

computations in this area first appeared at the end of World War II. A review

of the work performed at that time is available in the text edited by Kerr.
2

That work, as in most subsequent studies, considers the propagation

environment as a waveguide. The total field strength at the location of a

receiving antenna is then the sum of the field strengths of the modes of the

waveguide. The wavequide is modeled as flat, with earth curvature compensated

by a modified refractivity. Justification for this approximation is discussed

by Pekeris. 3,4 The medium is assumed to be laterally homogeneous.

Each waveguide mode corresponds to an "eigenvalue" of the system. In

many works, 5'6 these "eigenvalues" are associated with takeoff angles of a ray

relative to the ground -- waveguide modes exist for discrete values of

2 Kerr, D. E., Propagation of Short Radio Waves, MIT Radiation Laboratory

Series, Vol. 13, McGraw-Hill Book, New York, NY, 1951.

3 Pekeris, C. L., "Wave Theoretical Interpretation of Propagation of
10-Centimeter and 3-Centimeter Waves in Low-Level Ocean Ducts,"
Proc. of the IRE, May 1947, pp. 453-462.

Pekeris, C. L.,"Accuracy of the Earth-Flattening Approximation in the
Theory of Microwave Propagation," Physical Review, Vol. 70,
Nos. 7 and 8, 1 and 15 October 1946, p. 518.

Pappert, R. A., and Goodhart, C. L., Waveguide Calculations of Signal
Levels in Tropospheric Ducting Environments, TN 3129, Naval Electronics
Laboratory Center, San Diego, CA, 25 February 1976.

6 Budden, K. G., The Wave-Guide Mode Theory of Wave Propagation,

Prentice Hall, aiglewood Cliffs, NJ, 1961.

L . . ... . . .. . . . -- . ..5
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such angles, which are referred to as "eigenangles". Whether the eigenvalues

are associated with angles or with any other physical parameter, they are

obtained as the roots of a complex equation called a modal equation.

Therefore, a major part of any computation is dedicated to determining these

roots.

Computations of the lowest order waveguide modes in a duct environment

and the behavior of the corresponding fields were considered by Wait and

Spies.7 Dresp8 developed a usable program that computed field strengths in,

above, and below a duct. He modeled the earth as cylindrical; once a general

solution was obtained, he showed that it can be approximated with the aid of

the modified refractivity as the solution for the flat-earth case. Although

the formulation by Dresp was mathematically elegant, his program was limited

to the determination of 20 waveguide modes. In addition, his results were not

verified by comparison with measured data.

Pappert and Goodhart (see Reference 5) developed a code that was verified

using measured data for a surface duct. Skillman and Woods 9 found that the

Pappert and Goodhart program predictions adequately reflected measurements at

frequencies below 450 MHz, taken in an elevated duct environment. However,

they found that the Pappert and Goodhart model failed to provide predictions

for comparison with measurements at 2.2017 GHz.

7 Wait, J. R., and Spies, K. P., "Internal Guiding of Microwaves by an
Elevated Tropospheric Layer," Radio Science, Vol. No. 4, April 1969,
pp. 319-326.

8 Dresp, M. R., Tropospheric Duct Propagation at VHF, UHF, and SHF, MITRE
Technical Report MTR-3114, Vols. I and II, MITRE Corporation,
Bedford, MA, October 1975.

9 Skillman, J. L., and Woods, D. R., "Experimental Study of Elevated Ducts,"
Proc. of Conference on Atmospheric Refractivity Effects Assessment,
Technical Document 260, Naval Ocean Systems Center, San Diego, CA,
15 June 1979.
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Inherent limitations can be found in the Pappert and Goodhart model. one

such limitation involves the uncertainty in any calculation that all

significant modes have been found; that is, it is possible in their model to

miss eigenvalues.1 0 An attempt was made to utilize a more effective search

method with their model, but an extensive modification of the mathematical

formulation of the basic model was required, making its implementation

impractical.

Another limitation of the Pappert and Goodhart model is the requirement

that a "reference height" be specified, and the final result is dependent in

some instances on this reference height. Since the specification of the

reference height requires some physical insight into the particular problem

under consideration, the Pappert and Goodhart model may be employed only by

users with such knowledge. In this case, the model is not user-oriented. In

addition, no user's guide is available for the Pappert and Goodhart model.

The computational capabilities noted above assumed a laterally

homogeneous model. Cho and Wait11 performed work in which only piecewise

homogeneity was assumed, and the modes in each homogeneous section were

determined. However, no user-oriented computer code for accomplishing this

has been developed.

A major obstacle in developing any computer program that uses a waveguide

model is the calculation of all significant modes. The number of modes

increases as the frequency and duct height increases. In some cases,

thousands of modes are necessary to adequately describe the fields; this

10 Goodhart, C. L., and Pappert, R. A., Application of a Root Finding Method

for Tropospheric Ducting Produced by Trilinear Refractivity Profiles,
Technical Report 153, Naval Ocean Systems Center, San Diego, CA,
12 September 1977.

Cho, S. H., and Wait , J. R., Analytical Study of Whispering Gallery

Transmission in a Non-Uniform Tropospheric, Interim Report, Cooperative
Institute for Research in Environmental Sciences, University of Colorado,
Boulder, Co, 30 December 1976.

7
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further complicates the problem of determining all significant modes. In the

hope of overcoming the problem, Cho, et al.12 attempted to utilize a hybrid

approach to the problem in which a wavequide and geometrical optics series may

be used to describe the fields. In such a case, a single geometrical optics

term may be used to replace a vast number of terms in the waveguide mode

series. They obtained good results for a duct formed by an ideal refractivity

profile. However, this method is not applicable to more general refractivity

profiles.

OBJECTIVE

The objective of this work was to develop a user-oriented deterministic

computer model to compute the fields propagated in a homogeneous duct

environment for all frequencies and ducts of interest.

APPROACH

Documentation was reviewed on existing computational capabilities for

predicting propagated fields in a duct environment. Such capabilities were

found lacking for the frequencies associated with elevated ducts, principally

because of the inability to determine all the waveguide modes required to

describe the fields. After extensive analysis, it was found that this

inability stemmed from the facts that:

1. The mathematical functions, which are solutions to the field

equations in the duct environment, became linearly dependent (in a numerical

sense) for the most significant values of the argument of these functions; and

12 Cho, S. H., Migliora, C. G. and Felsen, L. B., "Hybrid Ray-Mode Formulation

of Tropospheric Propagation," Proc. of Conference on Atmospheric
Refractivity Effects Assessment, Technical Document 260, Naval Ocean
Systems Center, San Diego, CA, 15 June 1979.

8
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2. The value of these mathematical functions could be exponentially

large or small, thereby exceeding the capacity of common high-speed

computers.

These problems were overcome by:

I. Expressing the solutions to the field equations as linear

combinations of these functions in a manner that assures linear independence

in a numerical sense; and

2. -Utilizing a unique method for computationally expressing

exponentially large or small numbers.

It was decided that a Fourier transform formulation of the problem would

result in a modal equation that was most compatible with an available and

efficient eigenvalue "search" method. This formulation also provided a

flexibility, heretofore unavailable, for obtaining the field solution in a

numerically efficient manner. A computer code was developed based on this

approach.

The adequacy of the mathematical approach and the corresponding computer

model was verified by comparing computed results with those of other codes and

with documented measurements. once this was successfully accomplished, the

code was used to analyze the eigenvalues and the fields for different duct

configurations, different frequencies, and different heights of the

transmitting and receiving antennas.

9
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ORGANIZATION OF REPORT

The analytical and numerical basis of a computer program, called DUCT,

which has been used sucessfully in predicting propagated field strengths in a

DUCT environment, is described herein. A synopsis of the individual sections

follows.

Section Contents

2 Mathematical formulation.

3 Numerical procedures used to

determine the eigenvalues of the

modal equation.

4 Numerical procedures utilizing

the eigenvalues to determine the

fields.

5 Comparison of predictions of the

DUCT program with measurements.

6 Analysis of eigenvalue results

and relation of specific eigenvalues

to particular field contributions.

7 Analysis of results of fields for

different parameters of interest.

Appendix A Review of some characteristics of

the modified Hankel functions of

order one-third.

Appendix B Basis for an efficient method for

evaluatinq the modal equation, which

is in the form of a determinant.

Section 5 is independent of Sections 2, 3, and 4 so that the reader who

is interested only in verification aspects may skip directly to Section 5.

Sections 6 and 7 may also stand alone, although Section 3 would be beneficial

for a complete understanding of Section 6.

10
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SECTION 2

MATHEMATICAL FORMULATION

GENERAL

In this section, the problem of electromagnetic propagation in an

atmospheric duct is mathematically formulated. This is accomplished for

horizontally polarized radiation by using a second-order partial differential

equation to describe the variation of a component of the magnetic Hertz

(vector) potential. The solution of this equation is obtained by utilizing

Fourier transform formalism to cast the partial differential equation into the

form of an ordinary differential equation, and by solving the latter equation

in terms of unknown coefficients. These coefficients are determined using the

boundary and radiation conditions of the system. The solution for the Hertz

potential is obtained in the form of an integral that is evaluated with the

aid of complex function theory in terms of a series of waveguide modes.

The above process is generalized to include vertically polarized

radiation. Alternative mathematical formulations are introduced in succeeding

sections that will prove useful in required numerical evaluations.

REFRACTIVITY PROFILE

The index of refraction of a medium is given by:

n(z) = Wrr = r(Z) (1)

where c r and p r are the relative permittivity and permeability of the

medium. It is assumed that W r = 1 everywhere. In what follows, n is only a

function of the height z above the ground. The refractivity N is defined as:

N = (n-1) x 106 (2)

11
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and is numerically a more convenient parameter than n.

It is often mathematically convenient to utilize a rectangular coordinate

system to describe atmospheric wave propagation. In such a formalism, it has

been found that the earth curvature may be accounted for by appropriately

modifying the index of refraction of the atmosphere. This modification is

accomplished by adding a term to n which would cause a ray to bend in such a

way that its height above the "flat earth" at each point would be the same as

if it were a straight ray over a curved earth. The modified index of

refraction, m, is then given by (see Reference 2):

m(z) = n(z) + z/a (3)

where a is the radius of the earth in the same units as z.

The modified refractivity is defined as:

M = (m-i) x 106 (4)

The modified index of refraction will have a profile (i.e., a variation

with height) such as that shown by the dashed line on the right side of

Figure 2. To make the problem mathematically tractable, this general profile

w4ll be approximated by a piecewise linear profile with L sections, such as

that shown by the solid lines on the right side of Figure 2. In the figure,

L = 3 has been used. Each section will represent an atmospheric layer, or

region, the boundaries of which are parallel to a flat earth located at z = 0.

The interface between the ith and ith+1 layer (1 < i < L-1) is located

at z = zi, with the layer i = 1 closest to the ground. This is illustrated in

Figure 2, for the case L = 3. Each layer is assumed to be horizontally

homogeneous, with a modified index of refraction given by:

z-H.
m (z) = 2- 1  tan a + 1, (5)1 2 3-

= M (z) x 10-6 + , < i < L

12
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where Hi is the value of z at which mi (z) would equal unity, and the slope

tan ai/2 is assumed small:

1

Itan a. « <1 (6)

From Equations 5 and 6,

m. 2(z) 1 + (z-H.) tan a. 1 < i < L (7)1 1 1 , - -

-6
= I + 2 M.(z) x 10

1

The modified index mi(z) is assumed to be continuous across the interfaces

between the layers (see Figure 2):

mi(z i ) = mi+ 1 (zi ) , 1 < i < L-1 (8)

MAGNETIC HERTZ POTENTIAL

It can be assumed that horizontally polarized wave propagation is due to
+

a radiating magnetic dipole p = p z oriented in the z-direction and located

at x = y = 0, z = zT (see Figure 2). In a laterally homogeneous medium, the

wave propagation due to such a dipole exhibits axial symmetry (about a

vertical axis through the radiating dipole), and may be obtained from the
+

z-component 11z of the magnetic Hertz potential vector I . Thus:

+ (9)(x'y'z) = (x,y,z) z

E= -jwjj V x R

and

+= ~x+ (11)
H =V xV x 11+

14
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where w = 27f

f = the propagation frequency,

O= the permeability in vacuum,

and an ejwt time dependence is assumed.

DIFFERENTIAL EQUATION

In each atmospheric layer, Hl satisfies the partial differentialz
equation:

V 2[ + k 2m 2(z) II. = -p 5(x)6(y)6(z - zT), 1 < i < L (12)1 0 1 1 T - -

where

i[. = the value of ilz in the ith layer
2 2

k o  = the free-space wave number determined by k = 2 0
0 0

p = the magnetic dipole strength

6 = the Dirac delta function.

The Laplacian operator V 2 is defined as:

2 a 2 a2 2
V +x2 y2 z2

ax 2 ay 2 az2

In the ground, Hz satisfies the equation:

V21 + k 2n 2 a 0 z < 0 (13)
g o g g

15
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where

Hg is the value of Hz in the ground and

nfg is the constant refractive index of the ground.

This is given by:

2
n 2= E -a
g g 0w

where eg and a are the ground values for the permittivity and conductivity,

respectively.

A solution is sought to Equation 13 in the ground and to Equation 12 in

each atmospheric layer, subject to the boundary conditions at the ground and

at each layer interface that the tangential components of E and H are

continuous across the boundary. Using Equations 7, 10 and 11, it may be

shown 13 that these conditions may be written:

S i + 1 T on z = z.1 < i < L-1 %14)alt, an 1., - -(4

I i +
@z 3z

II = ii
g (15)

on z =0

131

13 Tyras, G., Radiation and Propagation of Electromagnetic Waves, Academic

Press, New York, NY, 1969.

16
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An additional requirement on the solutions obtained is that the radiation

conditions be satisfied. That is, Hg must represent an outgoing wave as

z. - - , and Ri must represent an outgoing wave as z+ + .

FOURIER TRANSFORM FORMULATION

The partial differential Equations 12 and 13 may be reformulated as

ordinary differential equations with the aid of Fourier transform theory (see

Reference 13). The double Fourier transform of H (x,y,z) is defined as:

M -j x Co -jvy
I (P,V,z) = f dx e f dy e H (x,y,z) (16)

with the inverse transform qiven by:

I W j4x ivy -
IT (xdy'z) -- ) e f dv e 11 (p,v,z) (17)2x y~) -

(2n)

Taking the double Fourier transform of Equations 12 through 15 yields:

L 2 _+ ] =- p 2 2(z-zT) , 1 < i _< L

o 2 (18)

d 2  + k0
2( n 2

*2 P 2 2]I =O (19)
dz2  k

i i +
z = 1 1 < i < L-1 (20)

da. dHli Ji i1 

dz dz

17
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g z =0 (21)

dl dlIg 1

dz dz

where

2 2 2
p - + v

Thus solutions are sought for . and 1 in Equations 18 and 19, subjecti g

to the boundary conditions in Equations 20 and 21 and to the radiation

conditions. once these solutions are found, they may be used in Equation 17

to find the Hertz potential in each medium which, in turn, may be used in

Equations 10 and 11 to find the electromagnetic field vectors.

SOLUTION OF EQUATIONS

In Ground

The solution to Equation 19 is:

= A ejyz  (22)
g g

where

y = k /n 2 _(p2 2o~ n -(/ko ) (23)

and A is a function of the parameter p. 1i satisfies the radiation condition

for large negative values of z, since it represents an outgoing wave in this

region. To assure that I + 0 as z + - , the branch of y is chosen so that:
g

18
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Im Y < 0. (24)

In Atmosphere

The complete solution to Equation 18 will be given by the sum of the

general solution of the homogeneous equation and a particular solution of the

inhomogeneous equation. The homogeneous form of Equation 18 may be written:

( 2 + i ) = 0 (25)

where

k = )2/3 m2(z) p 2 (26)q i(z) = tan ; 1 2. z
k 0

and Equation 7 was used. Equation 25 is known as the Stokes Equation and its

solutions are given in terms of Airy functions or in terms of modified Hankel

functions of order 1/3. For purposes at hand, it is more convenient to

utilize the latter.

Thus:

. = A.i h1(q) + Bi h 2(qi) , 1 < i < L (27)

where

(.q3/2)13 H 1~ ~(-- 3/2)
(q) = q H q (28)

19
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/2 "/3 (2)/2

h (q) q H q (29)
231/3 3

are the modified Hankel functions of order 1/3 of the first and second kind,

respectively, and are tabulated in the literature. 14  H/3 (1) and H1/3(2)1/3peandvely, are

Hankel functions of order 1/3 of the first and second kind, respectively.

The Ai and Bi in Equation 27 are not functions of z, but depend on the

parameters p and v. Their values are determined from the boundary

conditions. In order to satisfy the radiation condition for large z in the

Lth medium:

A -0 (30)L

The solution (Equation 27 with Equation 30) for the homogeneous form of

Equation 18 represents the entire solution for every layer except the one in

which the transmitting dipole is located. That is, only for the layer

containing z = zT is Equation 18 inhomogeneous. Assuming this to be the Pth

layer, a particular solution of the inhomogeneous equation in this layer is:

h I q p(z) ] h 2  q (z T  z < z T

P W h2 [ qp(z) h p T' , z > zT (31)

q p

where W is the constant Wronskian for h1 and h2 given by:

1 4Harvard Computational Laboratory, Tables of Modified Hankel Functions of
Order One-Third and of Their Derivatives, Harvard University Press,
Cambridge, MA, 1945.

20
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Sj ]. 1/3
W = W (h1 , h2 ) = h (q) h2  (q) - h2 (q) h1 (q) = - (2) (32)

and the primes indicate the derivative with respect to the argument of the

function. Thus:

3h (q)

h (q) m =1,2 (33)

and

qq( k 2/3
;"z = tan a - tan cP (34)

where Equations 26 and 7 were used. That Equation 31 is a solution may be

verified by substituting it into Equation 18, integrating each term from

ZT - 6 to ZT + c and letting E + 0. Since 1p is assumed finite at z = ZT

this yields:

- z + e
d ZI T
dP (35)

dz z = -p

which produces an identity when Equation 31 is used.

Equation 31 may be written more conveniently as:

up =Rp h (qp<) h2 (q P) (36)

21
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where

qP< = qp (min (z,z T)]

qP>= (q [max (z,z T)]

and

p
R =p

Wq

It will be noticed that, when P = L and z becomes large, the dependence of

11 on z is through h2 [q(z)]. Therefore, the solution of HP, given in

Equation 36, represents an outgoinq wave as z , and therefore is

consistent with the radiation condition.

Combining the general solution (Equation 27) of the homogeneous equation

with a particular solution (Equation 36) of the inhomogeneous equation yields:

I '. = A h (qi) + B h (q.) + R.h (qi) h (qi ) 6 , < i < L (37)

which, along with Equation 30, is the complete solution of Equation 18 in each

layer. 6. is the Kroneker delta function defined as:

6ip=
0 , i P

22



ESD-TR-81-102 Section 2

DETERMINATION OF COEFFICIENTS

The coefficients Ag in Equation 22 and A ,, Bi in Equation 37 must now be

ohtained from the boundary conditions. In the equations which follow, the

notation qij is used to indicate the value of qi on the boundary at z = zj,

with z denotinq ground level. Thus:

qij = qi(z) (38a)

Also, let

= qi(z) (38b)iiT

Substituting Equations 22 and 37 in each of Equations 21 yields:

A = A h (q ) + B h 2 (q10 + R h (q10 h (ql) 6g 1 1I 01 2 10 1 1 2 iT iP

and

jyA~ = q1  ~~(~+

from which A may be eliminated, resulting in:g

A (h (q 0 ) - G h (q )] + B [h 'iq1) - G h (q0)] (39)
11 10 1 10 1 2 10 2 10

2(q1T ) R16P[ h (q 10 G hi(q10

where

23
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Y (40)

G - q 1

Substitutinq Equation 37 in each of Equations 20 yields:

Aih (q ii) + Bih 2(qii) + Rih 1(q iT) h 2(qi) 6ip

= A. h (q. .) + B. h (q
1+1 1 i+1.,i 1+1 2 i-~-,1

+R. h(q )h ,Tq

i+I1 1 qi+1,i h2 (qi+1,T i+1,P

and

Ah1(q i i ) + B1 h 2 (q ii) Rih 1(q iT) h2(qii) 6ip

---- A h- (q )+B h' (q
q i+1 i+1,i i+I 2 i+1,i

+. h" (q.+ ) h2(
Ri+1 h1 I-,i 2 (qi+1,T i+1,P

These equations may ig. recast into the more convenient 
form:

A h (qi) .+ Bih 2(q i) _ Ai+1 h 1(q i+ ,i)- B i+I h2(qi+1,i

i+1 1 i+1,i 2 i+l,T i+1,P Ala)

- Ri h 1 q i T h 2 (q ii) 6ip

24
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qi+1 h 11(q+1i

Aih' (q) +B i h2(q) -Ai+ I q
2qi 1 j , (41b)

q.q

i+1 q. ) h (q .,
P 2-1--1 hI 1(qi~ hi i+

= i+1 q i i i 2 i l,

- Rih1 (qiT) h 2 (q sip, < i_< L- 1

Equations 41, 39 and 30 represent 2L equations in the 2L unknOwns A,

Bi ' < i< L.

As an illustration of 
the system of equations 

which must be solved 
to

obtain the unknown 
coefficients, Equations 

30, 39 and 41 are written in the

following form, assuMing L = 3 and P 
= 1:

Ah( hq = -Rh (q )h (q

A1h I (q10 + B1h2(q10 
12 IT 1 10

Ah(q11)4- Bh2(q) 
- Ah(q21) - Bh(q21) 

= -Rh1(q1T)h2(1

A h'(ql ) + h(q) -
q  - B'h(q2 =-RIh 1(q IT )h (qlI

11 1 1~ 2  
91 2 22 

1 21

Ah(q2) + Bh2(q) -Bh(q32 =0

A h1(q2) +, B~2q2 -B q~hW(q32) =0

2 1 22 2222 3 D 232 (42)

where

q' q'/ , q' =q /q

and

25
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hm(q10n h m (q 10 G h 1m(ql0 m 1,2 (42a)

If P were not equal to 1, then the system of equations would be the same as

that shown in Equation 42 except for the right hand side of the equations.

This will be discussed further in Section 4.

It is seen that this system of equations may be expressed in matrix forms as:

a = (43)

where

h 1 (q1 0 ) h2 (ql0 ) 0 0 0

h 1 (q 1 1) h 2 (q 1 1 ) - hl(q 21 ) - h2 (q 21 ) 0

a < h11(q 1 ) h 2' (q 1 1 ) - qR h1 (q 2 ) - qR'h 2 "(q 2 1 ) 0

0 0 hI (q2 2 ) hI (q2 2 ) - h2 (q3 2 )

0 0 h 1 (q 2 2 ) h2'(q 2 2 ) - qD" h 2'(q 32 )

(44)

AI

A (45)
B 2

3 -B 3

and

- h2 (q1 T) h1(q 1 0 )

~ h1 (q1) h 2 (q 1 1)

R I  h1 (q I) h 2'(q 11) (46)

0 2

26
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The solution for any one of the unknown coefficients may be obtained through

the use of determinants. Thus:

ITAl r Bi
A. = I- ' B = (47)

where, for 1 < i < L-1, TAi is the matrix obtained by replacing the column of

a in Equation 44 containing the coefficients of A, (in Equation 42) by the

vector a; and for i = L, ITAi I - o. TBi, 1 < i < L , is the matrix obtained by

replacing the column of a containing the coefficients of Bi by the vector 8.

Thus, for example:

S(q 1) hq0) Rh2(q 1T)h1(q 10 0 0

T h1(q ) h2(q11 ) -Rh1(q T)h2(q ) -h 2 (q)21 0

A2 1 11 2 11 1 1 1T 2 11 xR2 21

0 0 0 h(q h -hq
2 22 23

0 0 0 h'(q ) ch (q
L2 22 D2 32

The notation ITI indicates the determinant of the matrix T.

SOLUTIONS IN INTEGRAL FORM

Using Equation 47 in equation 38 yields:

IT . h (q ) + IT I h2(q)
II (i~~z =II C~z = Ai 1 i Bi 2 i R~ hq )r1(W'V'z) = .(p,z) lal+ Rh1(qi<h2 (q i> iP

1 4 i 4 L (48)

27
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which may be ,ised in Equation 17 to obtain:

1 jix * jvy -
H (x,y,z) - f di e f dv e 11 (p,z) (49)i 2 -= - i(2T)

Since p and v enter f. as p, Equation 49 may be written (References 2
I

and 13):

1 0 r 1 (2)
(r,z) - f p dp J (pr)fl p dp H (7Tr) 11 (p,z) (50)

i 271 0 0 i4T 0 i

where C is the contour in the complex p-plane shown as the solid line in

Figure 3.

As discussed in Reference 2, Equation 50 is valid only when there are no

singularities of H I(p,z) in the first quadrant of the complex p-plane, and
1

when:

f+ p dp H0 0)(pr) Ii (p,z) + 0 , (51)
C

where C+ is the quarter-circle contour of infinite radius lying in the first

quadrant of the p-plane. Both these conditions may be shown to hold.

28
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SOLUTIONS IN TERMS OF WAVEGUIDE MODES

By closing the contour C of the integral in Equation 50, the residue

theorem of complex variables may be used:

1. (r,z) - Res + L ( f + f ) p dp H (2)(pr) (p,z) (52)1 41T n n 47r -
C B

where the factor E Res is the sum of the residues of p H (2) (pr),Xi(p,z) at
- n n0 1

the poles of R(pi,z); the contour C- (see Figure 3) is the quarter circle of

infinite radius lying in the fourth quadrant; and the contour B encloses the

branch cut which is present as a result of the radical in the expression for y

in Ekuation 23. No other branch cuts are present within the contour of

integration shown in Figure 3 since the only branch points of the functions

h I (q) and h2 (q) are at infinity (see Reference 14). The integral will

vanish over contour C- in Equation 52 as in Equation 51. The integral over

contour B represents the surface wave contribution to the total field, and is

assumed to be small relative to the other field contributions. Therefore, it

will be ignored as well. Equation 52, therefore, becomes:

T.(r,z) = - Z Res (53)
1 2 n n

where the residues correspond to waveguide modes 15

An expression for the residues in Bquation 53 will now be derived. Since
(2)

the function H (pr) has no poles in the complex p-plane, the only poles of

the integrand p H (2)(pr) H. (pz) will be those of H. (p,z). But

since h i q(p)] and h 2 [q(p)] have no poles in the p-plane, it is seen from

15Wait, J.R., Electromagnetic Waves in Stratified Media, Pergamon Press,
New York, NY, 1962.
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Equation 48 that the only poles of i will be those for which Ial = 0.

Therefore,

(2) rp H (pr) (ITAI h1 (q) + ITBiI h2(qi
ResnP H0  (pr) Ji(P,z)) = Res n

or from the well-known techniques
16 for evaluating residues:

(2)  ITIn (54)

ReSn = Pn 0  (Pnr) aL
apap P = Pn

where pn is the nth value of p for which lal = 0.

For all cases of interest, IPnrI >> 1, so that H (2) (pnr) may be

approximated asymptotically as:

(2 ) Tr4 2 - pnr
H 0(2) r = eJ 2 e (55)

Pnr

Using Equations 54 and 55, Equation 53 may be written:

n .) = -+ IT Bi e (q h

P~ol)P = Pn P P

*1 e J/4 E X E e n (56)

-2r n n n

16Churchill, R.V., Introduction to Complex Variables and Applications,

p. 122, McGraw Hill Book Co., New York, NY, 1948.
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where

p
n

(57)

p =p

n
is referred to as an excitation function, and:

= E n nZ'Z T IITA I hl(q.) + ITBi I h 2 (qi)J (58)
S=n

may be referred to as a height-gain function. The functional dependence on z

occurs through h1 (qi) and h 2 (qi) (see Equation 26). The parameter zT enters

through IT Ai and ITBil.

ELECTRIC FIELD RELATIVE TO0 FREE-SPACE

+

Although the value of E may be obtained from Equation 56 by using

Equation 10, it is often more convenient to determine the magnitude of the

electric field relative to free-space:

A = l (59)

where Ef I is the magnitude of the field that would be obtained at the same

receiving location and using the same source, but with the propagation taking

place in empty space (i.e. in a vacuum). The value of A will now be shown to

be proportional to H for the problem under consideration.
i
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In free-space, the z-component of the magnetic Hertz potential is given

by:

-jk 0 r R W qp -jk 0 r
iifs _p e r p r r (60)

where Equation 37 was used and q' is obtained from Equation 34 using the
p

parameters of the actual environment (i.e., not the free-space environment).

When the Hertz potential vector is given by Equation 9, Equation 10 may

be used to obtain:

z

E = = jP 3 z (61)

in cylindrical coordinates. Using Equation 60 in Equation 61 yields:

ko 0w Rp W q; -jk 0 r

Eefs 47r r (62)

where higher order terms in 1/r were neglected. Applyinq Equation 56 to

Equation 61 results in:
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-jpnr -jkr e11 n  (6
E = e / 4 EPXEe n  /4 E X E e n (63)
Ei (2 rr) n n (27rr) n 2

where it was assumed that:

P k 0  (64)

for all p of interest. In Section 3, the approximation given in Equation 64

is shown to be valid for the work described herein. By comparing Equations 56

and 63, it is seen that:

Ei =k0wI i  (65)

Defining:

2 (2rr)1/2 2 (21r)1/2 )/2(0=-R W - p -2(2#rr) (66)
o R W q; p

and using Equations 62 and 65 in Equation 59 yields:

A= R W qX 0  InEne D (67a)

&

aO n n
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where Equation 56 was used. A dipole strength of unity was assumed in

Equation 66.

In Equation 67a, 1i. represents a sum of complex numbers taking full

account of the phase of each term. That representation will be referred to as

a "coherent sum", a "mode sum", or a "vector sum." It is also useful to

define the relative field that would be obtained if the phase of each term

were completely random instead of well-defined. This will be denoted as A,

where:

_-jpnr

T= I E -3e n 12 (67b)0 n n n

which is similar to the result that would be obtained if the power

contribution of each mode were added, rather than the field contribution.

Therefore, the representation used in Equation 67a will be referred to as the

"power sum" or "incoherent sum."

In terms of dB relative to free-space, A and A are written as:

AdB = 20 loq A (67c)

and

A = 20 log A (67d)dB 10

In most works on this subject (e.g., References 2, 5, and 8), the

function En defined in Equation 58 is written in the form:
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E = u(p ,z) u(p ,z ) (68)n n nT

which demonstrates the reciprocity between the transmitter and receiver.

Usini Equation 68 in Equation 66 would result in precisely the formulation
17

used by Dresp (see also Reference 8). Although it is elegant in its

representation, the form of Equation 58 is more desirable for the numerical

formulation of this problem.

VERTICALLY POLARIZED PROPAGATION

As shown in Reference 2, the magnetic Hertz potential, and the

definitions in Equations 10 and 11 for the electromagnetic field vectors, are

consistent with Maxwell's equations when Equation 1 holds (i.e., when the

variation in refractive index occurs only through a variation of er but not of

Pr ).  For vertically polarized propagation, on the other hand, an electric

Hertz potential (e must be used, from which the field vectors are obtained

through:

+ + (e)
H = jEW V x (69)

and

+ + (e)
E = V x V x 11 (70)

1 7Dresp, M.R., Tropospheric Duct Propagation at VHF, UHF and SHF, MITRE
Technical Report MTR-3114, Vols. I and II, MITRE Corporation,
Bedford, MA, October 1975.
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As shown in Reference 2, these definitions are only approximately consistent

with Maxwell's equations. The approximation, however, is considered to be a

good one for the duct problems of interest.

The mathematical formulation using the electric Hertz potential (e)

is identical to the formulation using the magnetic Hertz potential, with the

following exceptions:

1. The magnetic dipole strength p in Bquation 12 should be replaced by:

.(e)
p + -)p (71)WE n2(z T

0 T

where p (e) is the strength of an electric dipole oriented with its axis in the

z direction. This will also affect the value of R in Equation 37.

2. The first of Equations 15 should be changed to:

2 (e) 2 (e)n ff = n1 (0) 11 on z = 0 (72)g g1

3. The first of Ekuations 21 should be changed to:

2-re) 2(0 C e)
n I = n1 (0) I1 on z = 0 (73)

4. Equation 40 should be changed to:
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2
n (0)

q1  2
g

Of those listed above, Equation 74 is the only change that in practice

will affect the calculations. This may be concluded from the fact that 00

(Equation 67) is proportional to I/Rp, and En (Equation 58) is proportional to

R (through the dependence of IT Ai and IT Bi on R p). Since the final

result is dependent on the product aoEn, the value of R is therefore of no

consequence. Also, Equations 72 and 73 are manifested in Equation 74.

ALTERNATIVE REPRESENTATION

General Solution of Homogeneous Equation

The general solution to Equation 25 may be given in terms of Airy

functions, or in terms of modified Hankel functions, which are linear

combinations of Airy functions. The general solution to 1quation 25 could

similarly be written in terms of linear combinations of the modified Hankel

functions. This will be very useful in later sections. Thus:

II = Ai K (q i) + Bi K 2(q ) (75)

would be a valid general solution of Equation 25, where:

K1(qi) = c 11ih1(qi) + c 12ih 2(q i) (76)

K 2(q i) = c 21ih 1(q i) + c 22ih 2(q i) (77)
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The subscript i is placed on the constants c to indicate that there is no

need for these constants to be identical in each layer. The cmni would have

to be such as to make the K (qi) linearly independent.

It is convenient to set:

c 21i = 0, c22i = 1 for i = L (78)

so that HL in Equation 75 would satisfy the radiation condition when Equation
L

30 holds. It is also convenient to define:

c =1 , c = 0

(79)
4Trj/3

c 21 i = -e , 22i 1, i < L

and

-4Trj/3
cllL = 1, c12L = -e (80)

Substituting Equations 78 through 80 into Equations 76 and 77 yields:

K 1(q) = h 1(qi

(81)
' 4 j /3h(i i<L

K2 (qi) = h 2 (qi- e 4 h(q) i < L

and

K (q) =h(q) e-4Tj/3 h(q)

K2(q) = h 2(q i), i = L (82)
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As shown in APPENDIX A, these definitions have the effect of assuring that the

modulus of the two solutions Kl(q i ) and K2 (qi) are not both exponentially

large for any value for which Im(qi ) > 0.

Using Equations 81 and 82 in Equation 32, it may be seen that the

Wronskian for K1 and K 2 (as defined above) is identical to the Wronskian for

h 1 and h 2:

1 /3

WK 2 } = W{h h2  3 (83)

Particular Solution of Inhomogeneous Equation

A particular solution of Equation 18 was given in Equation 34. By

substitution in Equation 33, it may be seen that both of the following

particular solutions are also valid:

Rp K 1(q p < ) K 2(q p) (84)

ap

-R K 1(q p) K 2(q p<) (85)

where K1 and K2 are given by Equations 81 and 82. However, notice that

Equation 85 will not satisfy the radiation condition when P = L.

Mode Series Solution

Using the Ki-representation rather than the hi-representation, all terms
in the mode series solution remain the same as those derived above, except h i

is replaced by Y,. Thus, from Equation 58:
40
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E n= fIT~j 1 (q,1 + IT Bi K 2 qi P P(86)

The substitution of Kj, for hi would also take place in the expressions

for T AlT. and a in Equations 44 and 47.

4 1/42
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SECTION 3

DETERMINATION OF THE EIGENVALUES

GENERAL

The major computational effort required to obtain the solution given in

Equation 66 is determined by the eigenvalues p = pn which are the zeroes of

the determinant of a (see Equation 44). That is, the equation:

O0(P) = (pn) I = 0 (87)

must be solved forthe p . The variable p enters the matrix a in Equation 44

through the arguments qij of h and h2, where:

qi- =qi(z.) = [' - k + -H.) tan .] (88)
1) 1 (k ) / [ k 2  3 1

and where Equations 7 and 26 were used. z. is the height of the interface

between the jth and jth+l atmospheric layer, with z 0 representing the
0

ground level.

CHANGE OF VARIABLES

Instead of searching for solutions of Equation 87 in p-space, the search

may be carried out for any convenient function of p. In the waveguide mode

literature, the variable:

0 = sin (89)

is often used (see Reference 5), where 0 is interpreted as a plane wave angle

of incidence with respect to the horizontal at a given reference height.

Dresp (see Reference 8) searches for eigenmodes using the variable:
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2
p

= 1- (90)n k02k o

For numerical and analytical reasons which will become clear later, it is

more convenient to search for the roots of Equation 87 in "q10 -space". That

is, it is more convenient to write quation 87 as:

G1( 10 -- o (91)

where, from Equation 88:

q = k 0 I- \ 2 -H tan aI (92)

1 0 Itan a 11Ik) 1 1

Thus

2 q1
2 )2/3 tan ai (93)

k k 0

itan a i 11

and

10
p = 0 -H tan c 1 - 2/3(k 04tan
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Using Equation 93 in Equation 88 yields:

qi =q10 t + s.., 1(i<L, j = i-1, i (95)

where

t. = (Itan a11/Itan ai
)2/ 3 > 0 (96)

and

sij = (k0 /Itan ai )2/3 (H1 tan a1 - H. tan a. + z. tan ai) (97)

The ti and s ij are all real constants.

It should be noted from Equation 34 that:

q (z) = (k 0/Itan ai) 2 / 3 tan a. (98)

is not a function of p (and therefore not a function of q10

The roots of p n of interest were shown to lie in the fourth quadrant of

the complex p-plane. By straightforward conformal mapping using Equation 92,
(n)

the corresponding roots q 10 will lie in the upper half of the complex

q1 0-plane.
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The relationship between the qij and q 1 0 may be obtained from Equation

95. Figure 4 illustrates this relationship for two arbitrary values of

q 10 using a refractivity profile of the form shown in Figure 5. Figure 6

illustrates the relationship using the refractivity profile of the form shown

in Figure 7.

NUMERICAL INSTABILITIES IN hi REPRESENTATION

It was shown in the previous section that the matrix elements in Equation

44 may contain the functions h1 and h 2, or alternatively, may contain

functions that are linear sums of h1 and h2 (such as the functions K1 and K2

in Equations 76 and 77). It can also be shown that use of the h1 and h 2

functions result in numerical instabilities of the determinant lal when

q 10 is near the negative real axis and has a large magnitude. Section 6 shows

that the roots in this region of the complex q 10 -plane contribute most to

fields within the duct. Therefore, numerical instabilities in this region

cannot be tolerated.

From the asymptotic expansions of h1 (q) and h2 (q) for large jqi, given in

Reference 14 and APPENDIX A:

h2 (q) = e
4 j /3h (q) + F(q), < arg(q) < ii (99)

For jqj large and 2ff/3 < arg(q) < n, h1 (q) is exponentially large while F(q)

is exponentially small. Thus:

h /3 h (q), -L < arg(q) < 7, Iq! >>1 (100)
2 e4 ~ 3

1  3

If Equation 100 were to hold, say, for q = q 10 and q = q11 (which would be the

worst case in branch B of Figure 4), and if Equation 100 were substituted into
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Im (q)

q;o) qll ql0 Sll qll

Figure 4. Relationship between q and q0in complex q-space for refractivity
profile of Figure 5. q i

/

z

-~ ----------

Figure 5. Refractivity profile producing elevated duct.
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Im (q)

q 21

Re (q)

Fiur 6profile of Figure between .q and q in complex q-space for refractivity

<

M

Figure 7. Refractivity profile producing surface duct.
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Equation 44, then the first two columns of the matrix a would be linearly

dependent. That is, each term in the second column would be equal to the

corresponding term in the first column multiplied by the constant

factor e4 T/ 3. This is sufficient to make a singular, so that:

ja(q10 ) 0, all10qall

thereby making it impossible to locate discrete roots of Equation 91. Of

course, the matrix a is not singular in an analytical sense since the term

F(q), albeit small, makes Equation 100 only an approximation. Nevertheless,

the matrix a would be singular in a "numerical" sense, and would preclude the
(n)

use of numerical techniques to obtain the discrete roots q10

Pappert and Goodhart (see Reference 5) utilized a formulation employing

the functions h1 (q) and h 2(q). They avoided the numerical instabilities

described above by a "switching" procedure: They argued that, for values of q

for which Equation 100 holds, the fields are evanescent. Since the general

solution of Equation 25 was shown to be given by Equation 27:

11 = A h (q i) + Bi h 2(q.)' 1i L, (101)

an evanescent solution may be obtained from Equation 101 by letting:

A. = - /3

so that

II B, h 2(, - e -~h ( (102)

which, from Equation 99, may be written:
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B = . F(q ) (103)

As stated above, in the region of the q-plane in which Equation 100 holds,

F(q) is exponentially small and therefore is an evanescent field.

As described by Pappert and Goodhart (see Reference 10), the "solution-

switching" between Equation 101 and Equation 102 causes a discontinuity in the

function of which the roots are sought [G(ql0 ) in the case at hand]. In turn,

this could lead to missing or duplicating a root already found.

CHOICE OF ALTERNATIVE REPRESENTATION

The discussion above indicates the desirability of a solution in terms of

functions that

1. will not be exponentially large simultaneously in the root-search

region; and

2. will reduce without "switching" to the form of Equation 103 when

Equation 100 is valid.

Functions that satisfy these conditions are the pair h1 (q) and F(q), where

F(q) is defined from Equation 99. Thus:

= A h. (qi ) + Bi F(q ) (104)

The validity of using functions other than h1 and h2 was discussed in

Section 2.

In a region where the field is evanescent, A, would be expected to

approach 0, thus leaving an equation in the form of Equation 103. That F(q i )

50
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is exponentially small when jql is large and w < arg(q) < n/2 was noted

following Equation 99, so that in this subregion of the q 10 -plane, hi(q) and

F(q) are not both exponentially large. hi(q) is never exponentially large in

the remainder of the upper half of the q 10-plane as shown in APPENDIX A. Thus

Equation 104 is well suited for numerical determination of the roots of

Equation 91. It has the disadvantage, however, of not satisfying the

radiation condition. Since the radiation condition need only be satisfied for

the solution in the uppermost region (i = L), the form:

IL = BL h2(q L) (105)

will again be used in this region.

The functions used in the solutions given in Equations 104 and 105 are

identical to the functions K1 (qi) and K2 (qi), as defined in Equations 81 and

82. Therefore:

I = A K1 (q i) + Bi K 2(q ) (106)i i.1 i i 2

BOUNDS ON SEARCH REGION - MODE ATTENUATION

As discussed previously, the eigenvalues of Equation 91 will lie in the

upper half of the q 10 -plane (i.e., in the region Im(q 10 ) > 0). Thus the lower

bound of this region is the real axis. Although a discussion of the left and

right boundaries of the search region will be postponed for a later section

(Section 6), an upper bound of the search region will be obtained here in

terms of the maximum attenuation of the strength of a mode per unit lenqth.

From Equation 66, it is seen that each modal contribution to the total
- n r

field has an exponential dependence e Since the p n are complex with

Im(p ) < 0, the amplitude of each mode will fall off exponentially. Thus, if:n

pn = a + b, b < 0
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then

-jp r br -jra
e = e er

nn

Since b is negative, e will decrease in amplitude as r increases.
j~n

Typical values of r are generally large enough to make e negligible for

all JbI greater than some positive number. The relative decrease in the field

contribution from the nth mode over a single unit of length is given by:

-jpnr(r+1 ) I
e n l e  3 p I

-jp nr
e

so that the loss in dB would be given by:

L = -20 log e n = -20 log 1e) = -20 b log 10 e (107)

Suppose a maximum value of Ln is specified, say "ax- Then roots p n will be

sought, such that:

-b (20 log 10 e) < Lma x

or

L
b = Im(p n ) > max (108)

n 201log 10e

Equation 108 represents a bound on the region in p-space for which the mode

attenuation per unit length would not exceed Lmax* This condition must now be

converted to q 10-space. To accomplish this, Equation 92 is written:

q 10 = Itan a11 (An - H1 tan a1 ) (109)
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where

2p

An 1 2
k 0

and

lxn << 1 (110)

under the assumption that Ipn I Ik o, which will be shown to be valid

later. Thus:

pn k I -X - k (1--+...) (111)
n a n 0 2

where Equation 110 was used to obtain the Tylor series expansion in Equation

111.

Therefore,

A =2(1 (112)
n k k

L, particular,

2

Im(A ) - Im(p ) (113)
n k n0

Using Equation 113 in Equation 109 yields:

Im (ql(n) =- k0 ) 2/3 j_ Im(P (114)
0 ta ai k o0 iS( n)(
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and using Equation 114 in Equation 108 results in:

Im(q 0 ) < U (115)

where

2/3

2 ko 2/ L max
U k 0  Itan aI / 20 log 10e

Therefore, U as defined in Equation 116 will be used as an upper bound of

the search region, with Lmax being specified. Thus the search for eigenvalues

will be carried out in the band in the q 10-plane defined by:

0 < Im (q 10) < U (117)

SEARCH METHOD

The procedure used to find the zeroes of:

G1(q 10) = Ja(q10)1 = 0 (118)

in the complex plane is described by Morfitt and Shellman 18 and reviewed in

Reference 10. The procedure will be denoted herein as the MODESRCH method.

1'Morfitt, D.G., and Shellman, C.H., MODESRCH, An Improved Computer Program
for Obtaining ELF/VLF/LF Mode Constants in an Earth - Ionosphere Waveguide,
Interim Report 77T prepared for Defense Nuclear Agency, Naval Electronics
Laboratory Center, San Diego, CA, 1 October 1976.
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The method assumes that the function GI is analytic everywhere within the

region of search, and thus does not permit the presence of poles in this

region. The function G 1 (q10 ) satisfies these conditions.

The MODESRCH method was applied by Pappert and Goodhart (see

Reference 10) to the ducting problem, where their modal equation was in the

form:

G (0) = 0 (119)
2

where e is related to q10 and p through Equation 89. Their formulation of the

problem differed from the one being presented here in that the function G 2 is

obtained from the fundamental equation of wavequide propagation:

G 2(0) = R d(0) R (0) - 1 (120)

where Rd and Ru are the reflection coefficients "looking downward" and

"looking upward", respectively, from a given reference height. Equation 120

does not lend itself to application of the root-finding method to be discussed

below because it contains poles in the region of search. The function

G (0), therefore, had to be manipulated to produce a pole-free function. This
2

fact, together with the problems they encountered in solution-switching

between the forms of Equations 101 and 102, detracted from the desirability of

applying this MODESRCH method to their formulation.

Since the formulation of the problem presented in this report does not

suffer from the difficulties encountered by Pappert and Goodhart [i.e. G 1 (q1 0 )

is pole-free and no solution-switching is required], the MODESRCH method was

chosen to locate the roots of Equation 118.

The method utilizes the following fact from complex functional analysis:

In a finite region of the complex q-plane in which no poles of Gi(q) are

present and in which the only zeroes of G 1 (q) are simple zeroes, lines of
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constant phase [i.e., arg(G) = const] may end only at the boundary of the

region or at a zero of GI(q). Figure 8 (taken from Reference 10) illustrates

a rectangular region being searched. This figure shows that a line AB of

constant phase on which arg(G) = 0 has its ends at a zero of the function and

at the boundary of the region. The line HG, on which arg(G)= 0, has both its

ends on the boundary of the region. It is impossible for a line of constant

phase to have each end at a zero of G(q).

The MODESRCH method thus starts from the upper left-hand corner of a

"search rectangle" in the q-plane, and searches along the left-hand boundary

of the rectangle until a value of q is found at which arg[G(q)] = const = 0 or

arg(G) = 1800. Say a phase contour arg(G) = 0 is found at the point A, as in

Figure 8. This contour is then followed until it either exits the search

rectangle or until it ends at a point within the rectangle. If it ends at a

point within the rectangle, that point must be a zero of the function. Such

is the case in Figure 8, with the zero located at point B. Since a phase

contour arg(G) = 1800 must also intersect that zero, this contour is followed

until it exits the search rectangle (point C in the figure). The point at

which this contour exits the rectangle is stored, in order to assure that it

will not be followed again later in the search process. The search then

resumes again at the point A, and the boundary is traversed counter-clockwise

until another value of q is found at which arg(G) = 0 or arg(G) = 1800. The

next sucl 3oint in Figure 8 is point C. But this contour will not be followed

since it has been previously investigated. Therefore, the search continues

until the contour arg(G) = 0 is reached at point D, a zero is found at point

E, and the contour arg(G) = 1800 exits the rectangle at point F. The search

resumes again at D, and the rectangle is traversed until point G is reached at

which arg(G) = 0. This contour is seen to exit the rectangle at point H

without passing through a zero of the function. The search resumes at point G

and the remainder of the rectangle is traversed without finding any additional

contours arg(G) = 0 or arg(G) = 1800 which have not been previously

inves tiga ted.
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BOUNDARY
SEARCH F H

STARTING
POINT 270 1-0 90 -

SIGN OFA \180
Im(q)

A MESH

-SQUAREG

+ Y+ + - - -Phase contours for G(q)
(9 Zeros of G(q)

90 180' 27O' 0

DIRECTION OF C Re(q)-- SEARCH
SEARCH PATH RECTANGLE

Figure 8. Root finding method for a function G~q).
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The procedure just described is accomplished numerically by dividing the

search rectangle into mesh squares of side length At as shown in Figure 8, and

by investigating the sign of Im(G) at the corners of the mesh. A change of

sign between two adjacent corners indicates that a phase contour arg(G) = 0 or

a phase contour arg(G) = 1800 passes between these two corners. A change in

sign of Re(G) between the corners of a mesh square through which the 00 or

1800 phase contour passes, or between the corners of an adjacent mesh square,

indicates that the phase contour arg(G) = 901 or arg(G) = 2700 is nearby and

thus a zero is in the vicinity. The approximate location % of the zero

within a mesh square is obtained by an interpolation procedure. The precise

location of the zero is obtained using the Newton Raphson 19 method:

+ qi - Aqi' i = 0,1,2,... (121)

where

G(qi)
Aq = G (122)

i G'(q.)

The iteration in Squation 121 ends when the magnitude of the correction Aqi

to the previous approximation becomes less than a specified small positive

number, i.e. when:

6q i I  < e (123)

1 9 Pennington, R.H., Introductory Computer Methods and Numerical Analysis,
Macmillian Co., p. 236 ff, New York, NY.
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APPLICATION OF MODESRCH

As mentioned above, the MODESRCH method for determining the roots of the

modal equation requires the definition of a "search rectangle" in the q 10 -

plane where the roots are sought. The upper and lower limits of this

rectangle were given in Equation 117. It is shown in Section 6 that a left

limit may be determined as well. Hbwever, instead of defining the left and

right sides of a search rectangle in which all the roots should lie, it is

convenient to perform the search in subregions. This will have the advantage

of requiring less computer storage space for the searching subroutine. The

subregions are defined as shown in Figure 9. From Buation 117, the lower

bound is at Im(q 10 ) = 0 and the upper bound at Im(q 10 ) = U. [The MODESRCH

program (Reference 18) automatically increases the search region slightly for

numerical reasons.] The first subregion will be the rectangle defined by

-4 < Re(q 10) < 4. Thereafter, subregions of 4 units width are searched,

moving to the left of the imaginary axis, then to the right, then to the left,

etc., as shown in Figure 9. The search ends when two successive regions are

encountered which contain no roots.

rm(qlO)

-12 -8 -4 0 4 8 12 Re (q10 )

Figure 9. Subregions of q 10 plane for root-finding method.
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The size At of the sides of the mesh square in each subregion is about .1:

At Z .1 (124)

and the value of e in Bluation 123 is:

E = At/1000. (125)

However, if, after searching the first subregion, there is any indication that

At is too large, it is automatically made smaller.

NUMERICAL REPRESENTATION OF K1 AND K2 - EXPONENTIAL REPRESENTATION OF COMPLEX

NUMBERS

The functions KI(q) and K 2 (q), defined in Euations 81 and 82, are

numerically evaluated for large values of jqj (i.e., jqj > 4.2) using the

asympotic expansions given in (Reference 14) and summarized in APPENDIX A.

For small values of Iqj (i.e., jqj < 4.2) a power series is used

(Reference 14). In APPENDIX A, it is seen that for large values of jqj the

magnitudes of K1 and K 2 have an exponential dependence (see Equations A-11

and A-12), so that it is possible for 1KI1 and IK2 1 to become exponentially

large and to exceed the upper numerical limit which a high-speed computer can

consider. It is this fact which prompted Pappert and Goodhart (Reference 3)

to "switch" to a solution of the form of Equation 102 when jqI becomes very

large. Since the formula presented here avoids "switching", a different

scheme must be used to permit evaluation of K1 and K2 even when IqI is

exponentially large. This scheme will be defined in the following:

Instead of using two "words" to describe a value of the complex function

K1 (or K2 ) (i.e., a real value and an imaginary value), three words will be

used. These will represent a real value, an imaginary value and a real

exponent. Thus for example:
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E

- E1
K =K e (126)

where

K is a complex number and

E is a real number

The value of E will be given by one of the exponents in Biuation A-12. The

values of I1i1 and E will be small enough for a computer to handle in a

single precision mode. This representation using three numbers to describe a

complex number will be referred to as an "exponential representation."

All arithmetic using the functions K1 and K2 will be carried out without

evaluating e E when E is large. Thus, if:

_ Ea  - Eb
z = Zae , zb = zbe (127)

then the product:

z= z z (128)
c a b

will be evaluated by:

Zc --zb' -- + b (129)
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where

E
z zce (130)c c

The sum:

z =Za + z (131)

is evaluated as:

(E -E
e b azd za +zbe

(132a)

Ed E a E b> E

or

(E -Eb
Z d a=ae a b bp

(1 32b)

Ed =Eb ,  Ea <%

The ultplictio of % wth (Eb-E )

The multiplication of w eb a in Equation 132a is carried out, as
b

is the corresponding multiplication in Equation 132b.

Only when a final answer is required is a complex number zc obtained by

carrying out the multiplication indicated in Equation 130.

The summation procedure in Equations 132a and 132b Fr - complex numbers in

the exponential representation is valid for two numb -s, .nerical

difficulties may arise, however, when more than tN-- ,.MnerL tust be summed.

To illustrate this, consider the following three numbers:

z = 2e
a

zb = 3e 4  
(133)

z = -2e 3 0 0

c
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4
The sum of these numbers is obviously S = 3e = 163.79. However, when summed

in the above order, Equation 132 yields:

S = Z +z = (2 + 3e2 9 6  e 300 (134a)

and

S + S= + (2-2)e 300 = 0 (134b)

which does not agree with the actual result. The reason for this disagreement

is the fact that a computer would evaluate 2 + 3e- 296 as 2, thus losing the

second term.

The problem described above may be overcome by carrying out the sum in
E

- n
the order of decreasing exponents and, if in the partial sum S = S e the' n n

value S = 0, setting E = 0. The example above would then be carried out as:n n

Si =z + z + z (135a)a c b

so that

S= z + z = (2 - 2)e30 0  300 0 (135b)1 a c

and
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S = S + zb e 4 (3 + e4) = 3e 4  (135c)

EVALUATION OF THE MODAL DETERMINANT

Determination of the roots of Equation 118 required the evaluation of the

determinant of the matrix a which, for L = 3, is given in Equation 44 with hit

h 2 replaced by Ki, K2 . Thus:

K (q 10) K 2(ql O 0 0 0

K (q ) K2 (q ) -K (q 21) -K2 (q 21) 0

q' q;
1 1 1 12 1 2 2

jai = K(q 1 1 ) K;(q 1 1 ) q-K(q 21 -- q 1 0

K (q22 K2 (q22 -K2 (q32)

qS
SK(q22) K;(q2 )  q q K2(q 3 2 )

(136)

where

K (q0) = K(ql) - G K (q ), m = 1,2 (136a)
m 10 m 10 m 10

During the mode searching procedure the value of jal must be determined

numerous times. An efficient .,,ethod should be used to accomplish this.

However, the standard elimination methods require many summing operations
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which should be avoided as much as possible when expressing the Ki, K2

functions in terms of the exponential representation described above. The

evaluation method should also take maximum advantage of the presence of zeroes

in the matrix of Equation 136.

APPENDIX B describes a method for accomplishing this in which the total

number of multiplication operations required in the evaluation of the modal

determinant is on the order of 8(L-1), where L is the number of layers in the

atmosphere. This compares with (2L-1)! multiplication operations required

when evaluating the determinant using a cofactor expansion.

It is also possible using the method described in APPENDIX B, to avoid

any summation operations until all terms in the sum have been evaluated. The
2L-1I

total number of terms to be summed will be 2  , and the method described

following Equation 134 is used to accomplish this.

EVALUATION OF THE DERIVATIVE OF THE MODAL DETERMINANT

Part of the MODESRCH method for determining the roots of G 1(q 0 ) in

Equation 118 involves the use of the Newton-Raphson method (see Reference 19)

described by Equations 121 and 122. Since Equation 122 includes the

derivative G(q10), this derivative must be evaluated.

If all the elements ai(q) of an N-by-N matrix a are functions of a

variable q, then the derivative of the determinant of a with respect to q is

the sum of N determinants, each one having the elements of a different row

replaced by the derivative of the elements of that row. Thus, for example,

for a 3-by-3 matrix given by:

a 11  a 12 a 1 3

a0 a 21 a22 a23

a31 a32 a 3 3  (137)
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the derivative of its determinant would be:

a a a a a a a a a
dj i 11 12 13 11 12 13 11 12 13

0 a a + a ' a a 1 a (138)
d 21 22 23 21 22 23 + 21 22 '23

q
a a a a a a a a a

31 32 33 31 32 33 31 32 33

The above rule for obtaining the derivative of a determinant may be

easily applied to jlj in Equation 136. The derivatives of the individual

elements are obtained using the formula:

K (q..) 3 K (qi j ) 3 q..
m 1) m ij i13
q10 ) ti 1 ij L, j =i - , i, m=
q10 qij q10 mi

(139)

where Equations 95 and 96 were used and the prime indicates differentiation

with respect to the argument qij" Also:

a Km(qi ) = (qij ) ti = - qj Km (qi j )ti  (140)
q10 mi jmi

where, from BEuations 25 and 75, the fact was used that Km(qi j ) is a solution

of the equation:

a 2 K(q. .)
q ij + qi j Km (q.j) = 0 (141)

a ij

Equations 139 and 140 may be applied in Equation 136 to determine the

derivative of lal with respect to q 1 0 according to the rule given in Equation

138.
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Each of the individual determinants in Equation 138 will be evaluated

using the same method as that used to evaluate lcl. As previously discussed,

each determinant is composed of a sum of terms and, for numerical reasons,

this sum must be evaluated in order of decreasing exponents of the terms (see

Equation 135). However, since the derivative of a determinant is represented

in Equation 138 by the sum of determinants, it might appear that the use of

the summation scheme should be postponed until all terms of all the

determinants in Equation 138 are evaluated. That is, in Equation 138, each

determinant is composed of the sum of six terms. To avoid numerical errors,

it would appear that the summation method should not be applied separately to

each set of six terms representing the value of each determinant, but rather

it should be applied to the eighteen terms representing the entire summation

in Equation 138 (three determinants with six terms for each determinant).

Although this is possible to accomplish, it would be extremely time consuming,

particularly when the size of the matrix becomes larger.

The number of terms in the total sum representating the determinant

derivative may be made to be the same as the number of terms in the

representation of any individual determinant of which that derivative is

composed. (That is, in the example of Equation 138, the determinant

derivative dja 0 /dq may be expressed for cases of interest as a sum of only

six elements.) This stems from the fact that the exponent in tho exponential

representation of Km(qij ) is equal to the exponent in the exponential

representation of K (qij). That i, if:

___ ___ E (q )
m qij

K (qi j ) = K (qi j ) e (142)
m ij m ij

then

______E (q.Em ij)

KI(q) = Km(qi) e (143)
m ij m ij
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with the Em being the same in both equations. It should be noted that the

notation of Equation 126 was followed so that K m (q ij) is not necessarily

equal to the derivative of K m(q i j ) . The fact that the E are the same in

Equations 142 and 143 may be seen from examining the derivatives of the

asymptotic expansion of Km in APPENDIX A.

Thus in each of the determinants of which aIo 1l/3q, is composed, the

value of the exponent of the (i,j) term would be identical. This fact will

lead to the terms of the sums representing each determinant having the same

exponents for each determinant. To illustrate this, Equation 138 will be used

with:

E..

a. =a 1e (144)

E..

a..' a. e. (145)

Then, from Equation 138:

0 = S + S + S
1q 2 3

where

El 2 3 4 5 E6

S, = b 1e + b 1 2e + b 1 3e + b 1 4 e + b 1 5 e + b 16e

1 1 12 13 14 15 16

S2 = b21e + b22 e  + b23e + b24 e  + b25e  + b26 e

SI € 3  54 5 €6

S 3 = b 31e + b 32e + b 33e + b 34e 4+ b 35e + b 36e (146)
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where the £i's are the same for S1 , S2 and S3, V < i < 6.

Since these Ei's are the same, the respective terms may be summed without

incurring numerical difficulties. Thus:

d 1 £2 £3 £4 £5 £6

dq = cle + c 2 e + c 3 e + c 4 e + c 5 e + c 6 e (147)

where

c= i 2i 3i 1 i 6 (148)

From Equations 146 and 147 it is seen that, using the summation scheme for

exponential representation, the number of terms to be summed in order to

obtain the determinant derivative is the same as the number which must be

summed for the determinant itself.

SAMPLE RESULTS

A method has been described above for numerically determining the roots

in q10 -space of the modal determinant given in Equation 136. For the

refractivity profile shown in Figure 10, the results for the case of

transmission frequency of 2.2017 GHz are shown in Figure 11. The value of

Lma x used in Equation 107 was .375 dB/km.

Each "dot" in the figure represents a mode. For comparison purposes, an

illustration of the same modes in a space similar to one utilized in

Reference 7 is also included as Figure 12. Figure 12 plots the location of

the roots in terms of Re(6) with 6 given in Bquation 89, and the mode

attenuation per kilometer defined by Equation 107.
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In Figures 11 and 12, the corresponding regions in which the roots lie

are indicated. Thus the roots lying in region A of the q10 -plane in Figure 11

correspond to the roots lying in region A of the complex plane shown in

Figure 12. The approximate number of roots in each region are:

Region No. of roots

A 34

B 35

C 67

D 344

An interesting result in the comparison of the two figures is the large

variation in root-spacing that occurs from region to region in Figure 12.

Thus the 34 roots in region A in Figure 11 are essentially located at a

"point" on the scale of Figure 12. Similarly, the 67 roots in region C in

Figure 11 are all clustered in a relatively small region of Figure 12. The

magnified plot of the roots shown in Figure 13 (corresponding to Figure 12),

lemonstrates this to be true. The reason for this behavior is that the

abscissa, Re(O), is an entirely different quantity from the ordinate,

attenuation/km. Indeed, had the roots been plotted in a 0-plane in which the

axes were Re(9) and Im (6), then the behavior would have been appreciably

better. Nevertheless, it is to be noted that this poor behavior was not

observed in similar plots presented in Reference 9. This is probably due to

the difference in mathematical formulation in Reference 9, including

specifications of a "reference height" within the duct (see Section 5).

It is apparent from aluation 89 that, for all the roots of interest, the

corresponding values of p n are very close to the value of k O, because of the

smallness of the values of 8 for the roots in Figure 12.
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NORMALIZATION OF REFRACTIVITY PROFILE

It will now be shown that the roots q 10 (
n ) obtained for a given

refractivity profile M(z) are identical to the roots that would be obtained

for a profile with the same refractivity gradients, but normalized so that

M(0) = 0. That is, the roots would be the same for the two refractivity

profiles shown in Figure 14.

Using Equation 7, let the unnormalized modified refractivity be given by:

2 M. (z) . 10- 6 = (z - H. ) tan a. , 1 4 i 4 L (149)1 1 1

Then a modified refractivity profile Mi (z) with the same gradients1

(characterized by tan ai) would be given by:

2 M (z) 10 - 6 = (z - H. ) tan a. , 1 4 i r L (150)
1 1 1

Since it is desired that M (z) have the value 0 when z = 0:1

H E 0 (151)

II

Since M(z) and M (z) have U.e same gradients, the difference A between

-6 1-62M (z) x 10 and 2M (z) x 10 at each value of z will be constant. Thus:

H. tan a
= M (z) - M-.(z) = const = M (0) - N-.(0) = M (0) -

2x10-6  i 1 i 1 2x 0 - 6

(152)
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N NORMALIZED PROFILE

I UNNORMALIZED
PROFILE

37~
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or, using Equations 149 and 150 in Equation 152,

(Z - H. ) tan a. - (Z - H. ) tan a. = - H tan a1

or

H tan a - Hi tan a. - tan a. (153)

Now the eigenvalues of the modal determinant for the refractivity profile

M i(z) will be the same as the eigenvalues of the modal determinant for the

refractivity profile M. (z) if the qi, 1 < i < L, j = i-l,i are the same for

each profile. For the profile Mi(z) given by Equation 149, the values of qij

will be given by Equations 95 to 97, with Equation 97 representing the

dependence of qij on the Hi as:

s ( k 0tan I [H tan a1 - H. tan a. + z. tan a] (154)
ij Ia l) 11 1 1

For the profile M.(z) given by Equations 150 and 151, the values of qij will

be given by Equation 95 to 97 but with:

ko 2/3

si- = i[- Hi tan a. + z. tan a. ] (155)

But from Equation 153, the value of sij in Equation 155 is the same as the

value of sij in Equation 154. Therefore, the values of qij are the same for

the two profiles, and thus the values of q 10 are also the same.

0(n)

It is emphasized here that the fact that the values of q10  are the

same for the normalized and unnormalized profiles does not imply that the

fields obtained in Equations 67 for the two profiles would be the same. In
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general, these fields would not be the same for the two profiles since,
(in)

although the q10  are the same, the pn are not. The pn affect the value
-jpnr

of e and X in Equations 67.
n
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SECTION 4

NUMERICAL DETERMINATION OF THE FIELDS

(n)
RELATIVE FIELDS IN TERMS OF q 10

Once the zeroes of the modal determinant of the problem are found, the

electric field magnitude relative to free space due to a transmitter at height

zT may be determined from Bluation 67a at a height zR and distance r from the

tran .iitter. Thus

A 0 X Ene n (156)
0 n n n

where, from Equations 57, 58 and 66:

0 = 2/ 2nr (157)

P =P
P Pn

E n(Pn Z' zT) = ITAR(qT) Ik1 (qR) + ITBR(qT) Ik 2 (qR) (159)

(n)
q 10 q q10

In Equation 156, rn is obtained from the eigenvalue q 10 (n) through

Equation 94:
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P = k / 1 - H tan q 1 0  (160)

n tan ot 2/3

Equation 158 may be expressed in terms of q 10 (n) by writing:

X/ O n

n F l l 1 (n)
[ = 10n' qo 0 q10

But, from Equation 92,

3q 1____0 2p 2/3

3p 0 I tan al

Therefore

2
Ak

n 2 k 2/3 (161)

n tn q (in)
1 3 tanI q10 q 10q0

The value of pn in Equation 161 may be obtained from Equation 160 and the

value of 3jaj/3q1 0 may be obtained using the method discussed by Equations

137 to 148.

The factors X , En and exp (-jp nr) in Equation 156 are evaluated using

the exponential representation illustrated in Equation 126, and the product of

these factors is evaluated using Equations 127 to 129.

Referring to Equation 159, the qR are defined using Equations 95 to 97

by:

qR = q lOtR S R
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where

Ilan a,, 2 /

tR = tan 2/3 (163)

and

SR = Itan ) H/ tan a - HR tan aR + ZR tan R (164)

where zR is the height of the receiver located in region R. If the

transmitter is at a height zT which is located in region T, then qT is given

by Elquations 162 to 164 with R replaced by T. The values of qR and qT used in
(n)inquio16

Equation 159 are those for which q10 = q0 in Equation 162.

DEFINITIONS OF THE MATRICES T AND TBR

Equation 159 requires the values of the determinants ITARI and ITBRI

The matrices TAR and TBR will first be considered. These were discussed

briefly following Eqluation 47. For clarity, they will be redefined here using

the Ki solutions rather than the hi solutions.
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The modal matrix for a three-layer atmosphere is given by

(see Equation 136):

0 0 0
K (qi0 K1 (q10)

K1(q 1 K2(q 1) -K (q 21) -K2 (q 21) 0

q 2
K (q, I K (ql) -K'C~q ) -K(q

1q1 1 21 2; 21 0

K1 (q22 K2 (q22 -K 2 (q 3 2 )

K(q ) K2(q2 ) - K2(q

122 2 2 q 2 q 312)
(165)

where, as in Equation 136a,

K (q ) =Kq0) - G K (q ), m = 1,2 (166)
m 10 m 10 m 10

As in Equation 46, a vector T is defined which represents the contribution to

the boundary conditions of the particular solution of the inhomogeneous

differential Equation 18. The subscript T indicates the region in which the

transmitter is located (1 < T < L). For the example of L = 3,

a211

2
a, 13(167)

0
0

0

821

2= 22 (168)

823

824
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0
0

= 0 (169)

31

The values of the a,, will be given below. Thus, when the transmitter is in

region 1, Equation 167 is used; when the transmitter is in region 2, Equation

168 is used; and when the transmitter is in region 3, Equation 169 is used.

The matrix TAR is constructed by replacing the first column of the Rth

pair of columns of a by the vector , < R < L-1, and the matrix TBR is
T BR

constructed by replacing the second column of the Rth pair of columns of a by

aT, 1 < R < L-1. The matrix TAL is not considered as explained following

Equation 47. The matrix TBL is constructed by replacing the last column of

a by the vector ST.

Thus, TAI is formed by replacing the first column of a by 6T; and

TA2 is formed by replacing the third column of a by aT. TB1 is formed by

replacing the second column of a by ST; TB2 is formed by replacing the fourth

column of a by ST; and TB3 is formed by replacing the fifth column of a by aT•

A discussion of the elements of the $T vector follows. The elements of

aT for T = 1 were given in Equation 46 using the solutions in terms of the hi .
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Suppose the solution of the inhomogeneous differential equation in region

1 were given in terms of Equation 84:

1I = R1 K1(q 1<) K 2(q 1>) (170)

where q1< and q1> are defined following Equation 36. Then the elements of a,

may be given in terms of the K, solutions as:

1 = - R K2(qIT)K~qI0
11 R1 K2 (qT )K1 (q10

1 = -RI K1(q1T)K2(q11) (171)
12 R1 K1 (qT )K2 (q11

51 = - RI K1(q1T)K2(q1
13 R1 K1 (qiT 2Kq 1

where the alm refer to the corresponding elements in the vector of Equations

167. If the solution were given by Equation 85:

TI =-RI KI(q1>)K2(q1<) (172)

I1 R1 K1 (q1> )K2 (q1<(1 2

then the following set of values of the aIm would be valid:

S1 = R K(qIT)K(qI0
11 R1 K1 (qT )K2 (q10

12 =R 1 K 2 (q1T )K 1 (q 1 1 ) (173)

13 =R1 K2(q 1T)KI(q1

In an entirely similar manner, if the solution in region 2 is given by:
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I2 = R2 K (q 2<)K 2(q) (174)

then the elements of 82 are:

21 R2 K2 (q2T )K1 (q21

8 R 1K (q )K(q
22 2q 2 2T 1 21

823 R - 2 K 1(q 2T )K2(q 22)

8 -R K (q )K'(q(15
23 2 1 2T 2 22

824 = _R2 K1 (q 2 T)K2(q 2 2 ) (175)

and if the solution is given by:

I2 = -R2 K (q 2>)K 2(q 2<) (176)

then

821 =-R 2 K1 (q 2 T)K 2 (q21)

q 2

22 R 2 qK 1 (q2T )K2(q 21

823 R 2 K 2 (q 2T)K 1 (q 2 2 )

824 =R2 K2(q 2T)K(q22) 
(177)

In region 3, if the solution is given by:

11 =R K q) q(178)
3 R3 K8(q 3 <)K 2 (q 3 >)
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then the elements of 83 are:

831 =R 3 K2(q3T)K (q32

3 3(179)

32 3 q K2 (q )K1(q
32 3q2 3T 1 32

and if the solution is given by:

S R3 K1(q 3>)K 2(q ) (180)

the elements of 83 are:

831 R - 3 K 1(q 35 )K 2(q32)
1 (181)

R _-R K (q )K(q32 3 g; 1 35 2 (328

In region 3, the solution I3 must satisfy the radiation condition, thus

precluding the use of Equations 180 and 181. In region 3, therefore, 83 will

be defined using Equation 179.

Theoretically, either Equations 171 or 173 may be used to define

;and either Equations 175 or 177 may be used to define 82. Numerically,

however, there is often a strong preference as to which expression for 81 and

82 to choose. The basis of the choice will be somewhat similar to the basis

used to choose Equation 179 instead of Equation 181 to define the vector 83 in

region 3. Just as in region 3 the form of the solution is used which "best

satisfies" the boundary and radiation conditions, so too the form of the

solution which most closely characterizes the field in each respective region

will be used. Heuristically, the general solution will have to "work harder"

to satisfy the boundary conditions when the particular solution is farther

from the exact solution. Conversely, the general solution will be more

numerically correct if the particular solution more closely characterizes the

field in the region of interest.
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To determine which solution best characterizes the field in a given

region, the following general information will be used, and verified in

Section 7. In a duct environment,

1. The only instance in which the field in region T could be much less

at the upper boundary of the region than at the height at which the

transmitter is located, is when tan aT < 0, T > 1 and the field will be that

due to the "trapped modes" (see Section 6).

2. "Trapped modes are those for which the eigenvalues q 10 (n) lie near

the negative real axis, which implies from Equations 162 through 164 that

qT< (n ) and qT> (n will lie near the real axis.

From Equations 162 through 164:

Re(q T<) < Re(q T>) when tan aT > 0 (182)

Re(q T<) > Re(q T>) when tan aT < 0 (183)

When Re(q 10 ) << 0, it may be seen from APPENDIX A and Equations 182 and 183

that:

IK (q )I > IKI(q )I, tan a > 0 when IK (q_ )I >> 1 (184)

1 T< 1 T> T 1 1<

IK1(qT> )I > K I (qT<), tan aT < 0 when IK1(qT>)I >> 1 (185)
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when

IK2(qT<)I - jK2 (qT>)T )1 (186)

From Iuations 184 to 186, for tan aT > 0, it may be concluded that the field

in region T due to trapped modes will not be appreciably less at the upper

boundary of the region than at any point within the region when the solution

in that region is given by:

IT - KI(q T>)K(q T<), tan a T > 0 (187)

For tan aT < 0, the field may be appreciably less at the upper boundary of

region T than at any other point within the region when the solution in that

region is given by:

11T - KI(qT>)K 2 (qT<)' tan aT < 0 (188)

Therefore, from item (1), the particular solution of the differential

equation will be given by:

K1(qT<)K2(qT> tan aT > 0 or T = 1 (189a)

1IT R T

- K (q T>)K 2(q T<), tan aT < 0 and T * 1 (189b)
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The values of the elements in the vector 8T will be determined based on

whether the solution is given by Equation 189a or by Equation 189b. Thus, the

elements of at will always be given by Equation 171. The elements of S2 will

be given by Equation 175 if tan a 2 > 0 and by Equation 177 when tan a 2 < 0.

All evaluations of the ITAR I and IT BR I, as well as of E in Equation 159,

are carried out using exponential representation.

EVALUATION OF THE DETERMINANTS IT ARNI D IT BRI

The foim of the matrices TAR and TBR (i.e., the locations of their zero

elements) depends on the value of R and the value of T. The value of T would

affect whether a is given by Equation 167, 168 or 16q. The value of R would

affect the column of a (Equation 165) which the vector S replaces to form

TAR or TBR.

It is clear from the three-layer example used in Equations 165, 167, 168

and 169 that, if R = T, the zero elements of TAR and TBR are in the same

location as the zero elements of a. The same algorithm used to evaluate lal

(see APPENDIX B) will then also be applicable to the evaluation of

ITARI and ITBRI .

To demonstrate the general evaluation procedure when R * T, only a single

example will be used, with the application to other cases being

straightforward. For this example, T = 1, R = 2 will be used, and the

determinant IT A2I will be evaluated. In this case, the matrix TA2 will have

the form:
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4 1K(q 10 KI(q 101 0 0x( 1(q011  (q 11 12 2 212 0

A K(qll) K1(qll) 13 q K2(q ) 0
TA2 1 11) 2(q11) 13 q- 2 q21,

0 0 0 K2(q 22) -K2(q32

q 3
0 0 0 K2(q q2 K2(q

2) 223
(190)

Now comparing TA2 with a, it is seen that TA2 has non-zero elements in the

same locations as the non-zero elements of a, except r has the elementA2

11 at a position in which the matrix a has a zero. But from the definition

of a determinant in terms of a cofactor expansion, it may be shown that:

ITA 2
1 = ITA2 1 I + ITA 2 1 =0 (191)

611 = 12 = 13 =0

Now IT has non-zero elements in the same locations as the non-zeroNow 2 1 =0
11

elements of lal, and may therefore be evaluated using the same procedures as

those used to evaluate lal (APPENDIX B). The second term on the right side of

Equation 191 may be written as the product of 1 and its cofactor:

ITA21 I = a 0 IM( 11)1 (192)
012 = 13=0

where M(01 1 ) indicates the matrix which is the minor of , and is given by:
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K 1 (q 1 1 ) K2 (q 1 - K 2 (q 21 0

K/q q K 1(q 0

K~1 1  2 (q11 q 2M(g11) =I

0 0 K2(q22) -K 2(q32)

-4%(3 2  (193)
0 0 K2(q 2 2  - K2(q

The determinant of M(81 1 ) (also called the cofactor of 811) is just the

product of the determinants of the-upper left 2-by-2 matrix and the lower

right 2-by-2 matrix:

K1(q11 K2(q1 K2 (q 22 -K 2 (q 3 2 )

IM( 1 1 )I = (19'

K (ql I ) K2(ql) K(q ) -- 3 K(q

1 1 21'222 q 2 32

The evaluation of the determinants on the right sie of Equation 194 is

straightforward. However, the first determinant may be identified as tne

Wronskian given in Equation 83, so that this determinant need not be

numerically calculated.

Substituting Equation 194 into Equation 192, the result may be used in

Equation 191 to evaluate ITA21
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SECTION 5

VERIFICATION OF CALCULATION METHOD

GENERAL

A method is presented in the previous sections for calculating the fields

relative to free space in a duct environment. The method has been programmed

in a computer model called DUCT. In this section, the predictions using DUCT

are compared with measured fields in an environment containing surface ducts

and in an environment containing elevated ducts. In each case, the measured

fields are compared with:

(1) t-he mode sum predictions (Equation 67c) in which the phase of each

modal contribution is fully taken into account; and

(2) the power sum predictions (Equation 67d) in which the phase of each

modal contribution is assumed to be random.

SURFACE DUCTS

Measurements in an environment containing a surface duct were documented

in several references20,21 (see also Reference 5). The refractivity profile

used to calculate the fields is illustrated in Figure 15. It is the same as

that used by Pappert and Goodhart as an approximation to the profile observed

over the propagation path during the period in which the measurements were

made. It is normalized to zero at the ground. In Section 3, it was shown

that this normalization does not affect the location of the eigenvalues

2 0Pappert, R.A., and Goodhart, C.L., "Case Studies of Beyond-the-Horizon

Propagation in Tropospheric Ducting Environments," Radio Science,
Vol. 12, No. 1, pp. 75-87, January-February 1977.

2 1 Pappert, R.A., and Goodhart, C.L., "A Numerical Study of Tropospheric

Ductinq at HF," Radio Science, Vol. 14, No. 5, pp. 803-813,

September-October 1979.
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q 10 
(n ) but it might affect the value of the fields. The effect of profile

normalization on the calculated field is discussed in Section 7.

Comparison of DUCT predictions and measurements are given at frequencies

of 65 MHz, 170 MHz, 520 MHz and 3300 MHz; at distances 111.2 km and 222.4 km;

for receiver heights 30.5 m and 152.4 m; and for transmitter heights that

varied continuously from the ground to about 500m. Computationally, it is

more convenient to set the transmitter heights at 30.5 m and 152.4 m and have

the receiver heights vary continuously. It was verified that the computed

results using these propagation circuits were identical to those for which the

transmitter and receiver locations are reversed, as should be the case from

Equation 68.

The comparison of DUCT predictions with mesurements for different

parameters are found in Figures 16 to 19. The figures denote the location

(height) of the duct by a vertical dashed line and the height of the

transmitter by a larqe asterisk. Also denoted under the heading "normal" is

the range of relative fields over the heights shown that would be obtained if

the duct were not present. This field is the median field due to troposcatter

effects and was taken from Reference 5.

Fiqures 16 to 19 show an overall excellent agreement between measurements

and predictions, particularly since the prediction model is based on idealized

assumptions (e.g., lateral homogeneity) that only approximate reality. The

predictions are significantly closer to the measured data than they are to the

corresponding median troposcatter fields. In Section 7, the divergence of the

power-sum solutions from the mode sum solutions for higher frequencies and at

higher altitudes is discussed.

95



ESD-TR-81-102 Section 5
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Figure 16. Comparison of predictions with measurements for surface duct,

f = 65 MHz. (Mode sum and power sum predictions are identical
for the bottom two figures.)
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Figure 18. Comparison of predictions with mesurements for surface duct,
f =520 MHz.

98



ESD-TR-81.-102 Section 5
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Figure 19. Comparison of predictions with measurements for surface duct,
f 3300 MHz.
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SECTION 6

EIGENVALUE ANALYSIS

GENERAL

In Section 3, a method is described for determining the roots, or

eigenvalues, of the modal Equation 91 in a complex space, referred to as q10-

space. In this section, it will be seen that the locus of the eigenvalues in

q 1 0-space have certain distinct characteristics that can be predicted from the

refractivity profile. The roots in different portions of this locus may be

associated with different types of contributions to the fields in a duct.

The correspondence between the locations of roots in e-space (see

Section 3) and specific types of field contributions (i.e., trapped waves,

chordal waves, multi-hop waves) was discussed by Skillman and Woods (Reference

9). As will been seen below, use of the q 10-space for this purpose along with

the formulation of the problem utilized in Section 2 make possible the

prediction of the location of the roots that contribute to trapped waves,

leaky (chordal) waves and multi-hop waves.

To determine the field contribution of a given (say nth) eiqenvalue to

the field, the corresponding term in the field sum in Equation 66 is used.

Thus, the field contribution of the nth eigenvalue is given by:

-ipnr

An = o nEne (195)

where the definitions of the terms are given in Section 2. From the

definition of the "power sum", Equation 67b, it is seen that the contribution

of the nth eigenvalue to the "power sum" field is identical to Equation 195.

Thus, separate data for "mode" and "power" results are not needed.
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The parameter En is a function of the receiver height zR and the

transmitter height ZT, and can in principle be cast in the form of

Equation 68:

E = U (z ) u (zT ) (196)
n n R n T

In order to determine the contribution of the nth mode to the field at a

receiver height ZR' a transmitter height zT must be specified. It is seen

from Equation 196 that, regardless of the value of zT, the variation of En

(and therefore of A n ) will be the same except for a factor un(zT). When

expressing the result in dB, the variation of ADB as a function of z R will be

the same for different values of ZT, except for an additive constant.

COMPUTED EIGENVALUE LOCATIONS - ELEVATED DUCTS

To determine the locations of the eigenvalues in the q10 -plane, the

refractivity profile shown in Figure 24 will be assumed. The eigenvalues are

determined using the methods described in Section 3, for four different

propagation frequencies: 149 MHz (Figure 25), 449 MHz (Figure 26), 2.2017 GHz

(Figure 27) and 10 GHz (Figure 28). (It is emphasized here that the

eigenvalues are independent of the location of the transmitter and the

receiver.) In each of these figures, the location of an eigenvalue is

indicated by a dot on a graph of the q 10-plane in a portion of the figure.

When the dots are sufficiently close together on the scale used, they will

give the appearance of a continuous line or area. The eiqenvalue plot in

Figure 27 was shown in greater detail in Figure 11.

In each of the eigenvalue plots, the following regions may be identified:

1. A region in which the eigenvalues lie on or near the real axis

(region A in Figure 11).
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Figure 28. Eigenvalues and some of their field contributions for refractivity
profile of Figure 24, f = 10000 MHz.
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2. A region in which the form of the locus of the eigenvalues is "wavy,"

but in which the overall trend is diagonal from lower left to upper right

(region D in Figure 11). The lower left origin of this region corresponds

approximately to Re(q 10 ) = 0.

The locus of the eigenvalues connecting the two regions above may be

identified as consisting of two additional regions: one which has a wavy form

and extends from Re(q 10 ) = 0 in the negative real direction (denoted as region C

in Figure 11); and finally a region (denoted as region B in Figure 11)

connecting the eigenvalues on the real axis with region C. The locus of the

eigenvalues in region B is approximately linear.

FIELD CONTRIBUTIONS FROM EIGENVALUES IN DIFFERENT REGIONS OF THE q10-PLANE

For the refractivity profile and frequencies considered above, it was

shown that the locus of the eigenvalues in the q 10-plane is always composed of

well-defined sections, or regions. It will now be shown that all eigenvalues

in the same region will contribute to the propagated fields in a similar

manner. This is accomplished in Figures 25 to 28 by indicating the field

contribution of various eigenvalues. In each of these figures, the graph of

the field contribution versus height corresponding to a given eigenvalue is

joined to that eigenvalue (in the q 10-plane) by an arrow.

f=149 MHz

The 149-MHz case is considered first. The four different regions of the

locus of the eigenvalues (Figure 25) are identifiable in this case, but they

are not as distinct as for the higher frequency cases. The field

contributions for modes in each of these regions are illustrated as a function

of height in the figure.

In Figure 25, the eigenvalue that lies near the real q 10 -axis and

corresponds to plot A contributes principally within the duct with a small

amount of leakage above the duct and even less below it. The single "bump" in

the curve in plot A indicates that the corresponding eigenvalue represents the
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"fundamental" waveguide mode of propagation.

The eigenvalue corresponding to plot B in Figure 25, which lies in what

has been identified as "region B," produces a field which is as strong above

as it is within the duct. It falls off quickly, however, as the receiver

height decreases. The number of "bumps" in the curve indicates that the

corresponding eigenvalue represents a waveguide mode of fourth order.

Plot C in Figure 25 shows the field contribution due to an eigenvalue in

region C. Here, the field is largest above the duct and falls off slowly as

the receiver height is decreased until a point is reached at which the field

decreases much more rapidly.

The effect of an eigenvalue in region D is shown in plot D, which is

similar to plot C except for the fact that in plot D, the decrease in field

strength with a decrease in altitude is approximately the same at all heights,

whereas in plot C there is a sudden drop-off prior to reachinq the ground.

f=449 MHz

For the 449 MHz case, the field contributions are illustrated in
Figure 26 (plots A" ) , A( 2 ) , A( 3 ) , B, C, D) for six eigenvalues. It is seen

that the eigenvalues contributing to plots A A and A( 3 ) represent the

fundamental, second order and third order waveguide modes, respectively. In

each of these cases, the fields due to these eigenvalues are negligible

everywhere except within the duct.

The field in plot B is shown to be largest above the duct, but falls off

very rapidly at a height just below the duct bottom. The field shown in plot

C is similar to that in plot B, but the "leakage" reaches further below the

duct before it falls off rapidly. The rapii fall-off disappears entirely in

the field of plot D in which the ground presernke appears to play a role.
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f=2201.7 MHz

The fields shown in plots A A A( 3 ) and A( 4 ) in Figure 27 are

negligible everywhere except within the duct. Plots AM , A (2 ) and A (3 )

represent the lowest order waveguide modes.

The fields shown in plots BM, B ( 2 ) and B( 3 ) are "leaky" above the duct,

but little or no leakage occurs below the duct. Comparing plots C(  , C(

C (3 ) and C (4 ) with the locations of their corresponding eigenvalues, it is

seen that, as Re(ql0 ) increases, the height decreases at which the respective

fields fall off rapidly. Once the eigenvalue region corresponding to plots

D (1 ), D(2 ) , D (3 ) and D 4  is reached, there is no rapid fall-off of the fields

at any height. This is interpreted as indicating that the ground contributes

to these fields through the mechanism of reflection.

f =10 GHZ

The field behavior indicated in plots A I ) ? A( 2 ) , B, CMI ) , C( 2 ) and D of

Figure 28 are seen to be entirely analogous to those already observed in the

field plots (Figure 27) for corresponding eigenvalue regions for the 2201-MHz

case.

Based on observations for the four frequencies considered, it is

concluded that, when an elevated duct is present, the portion of the

eigenvalue locus on or near the real axis contains the eigenvalues that

describe "trapped waves" existing almost exclusively within the duct. Since

the modal attenuation with distance is given from Equation 195 as le-3P nr

this attenuation depends on Im(p n) . From Equation 160 it is seen that
(in)

Im(pn ) would be very small for values of q10  on or near the real axis. The

trapped waves within the duct, therefore, propagate with little or no

attenuation per unit length.

As the location of the eigenvalues in the q10 -plane moves in the positive

real direction, the eigenvalues begin to represent leaky waves, first to the
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region above the duct and then to the region below the duct. The leaky waves

below the duct correspond to the chordal waves referred to by Skillman and

Woods (Reference 9). The leakage reaches lower altitudes as Re(q 1 0 ) increases

until, in the neighborhood of Re(q 1 0 ) = 0, the leakage reaches the ground.

Beyond this point, ground reflection becomes important, and the modes can be

associated with "multi-hop" waves.

The mathematical basis for Re(q 1 0 ) = 0 to represent the boundary in

q 1 0 -space between eigenvalues which produce ground-influenced fields (multi-

hop modes) and eigenvalues which produce ground-independent fields (chordal

modes) is presented below. Also presented is a criterion for determining the

limits of Re(q 1 0 ) in the q1 0 -space enclosing the region of the eigenvalue

locus representing trapped modes (region A).

BOUNDS ON TRAPPED AND MULTI-HOP EIGENVALUES

The eigenvalues of interest will generally lie in a region of q 1 0 -space

of the form shown in Figure 29, where the real dimension is much greater than

the imaginary dimension. This was seen to be the situation in the cases

considered above. Also shown in Figure 29 is the line representing
(n) r h

arg(q1 0  = 27r/3 . As discussed in Section 3, the eigenvalues q 1 0  are the

zeroes of the function:

G1(q = G 3(q01 q 1 1, q 2 1 ' q 2 2 .... qL,L-1 0 (197)

where G1 is the value of the determinant in Equation 136. The q.. are related

to q10 through Equations 95, 96 and 155:

qij = q1 oti + S.. (198)

. .. 16 .
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( tan a 2/3>0(19
i = tan ai (199)

k0 12/32

S.. k 0 2/3 2 M(z) x 10-6 S real (200)
()Itan0i a 10 I S) rl

and the refractivity profile is assumed normalized to zero at the ground.

Each parameter qij enters Equation 197 through Km(qij ), m = 1,2, where

Km is a linear sum of modified Hankel functions. In APPENDIX A it was shown

that, if Im(qij) > 0, the asymptotic behavior of each Km (qij) for

arg(qi ) < 2r/3 is different from its asymptotic behavior for

arg(qi j ) > 27T/3. Since Ira(q 10) > 0, it follows from Equations 198 to 200

that Im(q i j ) > 0, so that the prior statement is valid for the case under

consideration. Therefore, it is reasonable to assume that, for a particular

qij, the behavior of the function G3 in Equation 197 for arg(qij) < 21/3

would be different from the behavior of G3 for arg(qi ) > 27r/3. If the

functional behavior of G3 is different when qij crosses the line

arg(q.) = 21T/3, then it is reasonable to assume that the locus of the roots

of G3 would be different as well.

Consider, for example, the refractivity profile shown in Figure 24, with

a propagation frequency f= 2201.7 MHz. Using Equations 198 to 200, Figure 30

illustrates the locations of the qij for two values of q1 0, such that only the

q10 (and not the other qij) are on different sides of the line arg(q) = 21/3.

The behavior of G3 and the locus of its roots would be expected to be

different for the two cases shown in Figure 30. Similarly, the locus of the

roots of G3 are expected to be different for the two cases shown in Figure 31.

Now if, in the vicinity of arg(q 10 ) = 27T/3 , the roots of G1( 1q 0 ) occur

for values of q 10 for which Im(q10 ) is small, then Re(q 10 ) would also be small

for these roots. Since a different behavior of the locus of the roots of

G(q 1 0 ) would be expected for values of q,, on either side of the line

arq(q1) = 2n/3, this difference of behavior would appear to occur near

Re(qj 0 ) = 0. This would explain the location in Figure 11 of the boundary
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between region C and region D of the locus of the roots. A similar difference

in behavior across Re(q 1 0 ) = 0 is observed in Fiques 25, 26 and 28 as well.

Since q 10 is the value of q (Equation 26) at the qround, it is not at all

surprising that the field contributions of the roots for which Re(q 10 ) > 0

would demonstrate a ground effect (e.g., plot D of Figure 28), whereas field

contributions of the roots for Re(ql0 ) < 0 would not demonstrate a ground

effect (e.g., plot C ( 2 ) of Figure 28).

The same reasoning would be expected to apply to the fields within the

duct. As demonstrated in the previous subsection, these fields would receive

their major contribution from the "trapped" modes, the eigenvalues q 10 (n)

of which lie on or near the real q 1 0 axis. Tht duct boundaries in q-space are

characterized by the values of q corresponding to the points A and B in the

modified refractivity profile of Figure 24. These values of q are:

(1) Point A: either q,, or q21

(2) Point B: either q22 or q 3 2

Since the eigenvalues contributing to the trapped waves in the duct

satisfy:

Im(q10) 0, trapped modes (201)

then from Squations 198 to 200,

Im(qij) 0, trapped modes (202)

(n)

It follows that, for trapped modes, the roos q1 0  are such that, if any qij

crosses the line arg(q) = 2 T/3, it does so in the vicinity of:

Re(qi j ) 0, trapped modes (203)

It follows from Equations 202 and 203 that, for trapped modes, the
(n)

roots q10 are such that if any qij crosses the line arg(q) = 27/3, it does

so in the vicinity of:
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q.. =0 (204)
13

From Bluations 198 to 200, the value of q10 at which Equation 204 holds is:

S. L3 T k0 12/3
= _- 2 M(z.) x 106 (205)q10 =- tl =  I t n (x7

But since the right side of Equation 205 is dependent only on the index j and

not on the index i, the value of q10 is the same for the two qijs that

characterize point A in Figure 24 (i.e., q 11 and q2 1 
), and is the same for the

two qi's that characterize point B (i.e., q22 and q32 ) .

(n)

The locations of the roots q10  which represent the fields within the

duct would thus be expected to be affected by the value of q 10 for which q11

(or q 21 ) = 0, and by the value of q 10 for which q22 (or q 32 ) = 0. To

investigate the relationship between these values of q 10 and the bounds of the

region in the q 10 -plane containing the eigenvalues representing trapped modes,

consider TABLE-i. The information in the table is for the refractivity

profile and frequencies used to obtain Figures 25 through 28. In the table,

trapped modes are taken as those modes for which Im(q 0 ) < .02.

It is seen from TABLE-I that, for the elevated duct profile and for the
(n)

frequencies considered, the left boundary ;n the q10 plane of the q10

representing trapped waves in the duct is approximated well by the value of

q10 for which qli = 0. Similarly, the right boundary of these trapped modes

is approximated well by the value of q 10 for which q 22 = 0.

It is also interesting to note from TABLE-I that the number of trapped

modes between the right and left boundaries of the trapped-wave eigenvalues

(density of the eigenvalues in q 10-space) increases only logarithmically with

frequency. Therefore, mesh size in the numerical method descibed in Section 3

to locate the roots need not be altered appreciably for different frequencies.
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APPLICATION OF EIGENVALUE ANALYSIS TO 'NO-DUCT PROFILE

In order to verify the concepts described above for estimating the

locations of trapped modes, the theoretical two-duct geometry illustrated in

Figure 32 will be considered with a propagation frequency of 449 MHz. The

computed eigenvalues are illustrated as the dots in the q 10 plane in Figure

33. The eigenvalues in this figure appear to lie along two separate loci, one

characterizing each duct. The trapped waves for each duct are easily

identifiable as those lying near the real axis. Field plots in Figure 33

illustrate the field contributions for each of the labelled different

eigenvalues. (Note that the labelling is not in any apparent sequence, but

rather represents the number of the mode in the order in which it is

calculated using the MODESRCH method described in Section 3).

In Figure 33, plots 82, 81 and 80 are shown to correspond to the trapped

waves in the higher duct. Plot 56 represents a leaky wave from the same

duct. Plots 44, 46, and 47 are shown to correspond to trapped waves in the

lower duct. It is interesting to note that the eigenvalue corresponding to

plot 82 (i.e., the leftmost eigenvalue) represents the fundamental waveguide

mode for the system, and contributes to the field in the upper duct. Plot 44,

on the other hand, represents a higher mode of the system, but is the

fundamental mode of propagation in the lower duct.

Using aquation 205, the boundaries of the region in the q 10 plane

containing the trapped modes of the lower duct are approximated by:

Sl
qo S11 =  11.7

1

and

S
22q .1. . . 7.3

2

1 24
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while the corresponding actual boundaries for the eiqenvalues shown in

Figure 33 are -10.8 and -8.1. The boundaries of the region containing the

trapped modes of the upper duct are approximated by:

S 3 3
q = 3- = 18.4

10 t3
S 4 4

q10 = t - 14.1
10 4

while the corresponding actual boundaries for the eigenvalues are -17.7 and

-14.5.

The method described in the preceding subsections, for approximating the

boundaries of the region in the q 10 plane that contains trapped modes, is thus

seen to have a more general validity. Its application to ground-based ducts

will be demonstrated in a later subsection.

COMPUTED EIGENVALUE LOCATIONS - SURFACE DUCTS

The locations of the eigenvalues in the q 10 -plane will now be

demonstrated for the surface duct refractivity profile illustrated in

Figure 34 at four propagation frequencies: 65, 170, 520, and 3300 MHz.

The eigenvalue locations for the , 1Hz case is illustrated in Figure

35. Unlike the elevated cases, the locus of the eiqenvalues appear to have

two branches: one including the eigenvalue which produces plot C and one not

including this eigenvalue. The field plots shown in Figure 35 illustrate the

field contributions of each of the modes. The modes that appear to be

affected by the presence of the duct are those corresponding to plots A and

C. Thus, in Figure 35, it would be reasonable to assume that plots A and C

correspond to eigenvalues that belong to another branch. Since the former

locus is associated with the ducted fields, it would be expected that the

latter locus is produced by a different propagation mechanism. It will be

demonstrated below for the 170-MHz case that this mechanism is likely to be

simple diffraction.

128



ESDTR-81-102 Section 6

C--4
00

0e

00

4

0 0

0

w m

00 0 9
N0o0 0

W)~~ ~ NI0H9

1294



ESD-TR-81--102 Section 6

4 j

84.

ly -- - -- ----

* 4

k"4-4

0

a M

44

m0

130



ESD-TR-81 -102 Section 6

The eigenvalue locations for the 170-MHz case are illustrated in

Figure 36. Again, two distinct loci may be identified: one consisting of

eigenvalues corresponding to plots A, B, C, D, E, F, G; and the other

consisting of eigenvalues corresponding to plots H, I and J. The fields of

plots A, B, C, D, E, F and G are seen to be affected by the duct. However,

the fields in plots H, I, and J, seem unaffected.

It is interesting to note from Figures 35 and 36 that the loci of the

modes affected by the duct have a positive slope, while the loci of the modes

not affected by the duct have a negative slope. Th ascertain the likely

source of the fields that are not affected by the duct, the "ductless"

refractivity profile shown in Figure 37 will be considered. The eigenvalues

produced by this profile for f = 170 MHz are shown in Figure 38. The form of

the field contribution for each of these eigenvalues is the same, a typical

one being illustrated by a single field plot in the figure. The form of this

field is seen to resemble that of those field plots in Figures 35 and 36 which

do not appear affected by the presence of the duct. The slope of the locus of

eigenvalues in Figure 38 is seen to be negative, resembling the loci of the

eigenvalues that are not affected by the duct in Figures 35 and 36. But when

the refractivity profile does not exhibit a duct, the fields at beyond-horizon

distances are caused by diffraction (since troposcatter has been ignored in

this formulation). The eigenvalues in Figures 35 and 36 that appear to be

transparent to the duct are, therefore, most likely associated with

diffraction fields.

Resuming the investigation of the eigenvalue locations for surface duct

environments, Figure 39 illustrates such locations for a propagation frequency

of 520 MHz and the duct profile shown in Figure 34. One eigenvalue

(corresponding to plot D) is now observed which does not lie on the locus of

the other eigenvalues. The eigenvalues corresponding to plots B and C, which

do not lie near the real q 10 axis, are seen to be highly leaky to the region

above the duct. The field in plot D, which corresponds to an eigenvalue that

does not lie on the locus of the other modes, has the appearance of the

diffracted field shown in Figure 37 except for an oscillation in the curve

near the ground.
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The eigenvalues calculated for a frequency of 3300 MHz are illustrated in

Figure 40. The field contributions of the first three trapped modes are shown

in plots A" ) , A (2 ) and A (3 ) . The contribution of a mode located off the real

axis is illustrated in plot B. It is seen that this mode still contributes

significantly to the field within the duct, and leaks slightly above the duct

and for only a short distance.

Just as in the case of elevated ducts (TABLE 1), the prediction method

(Equation 205) for approximating the bounds of Re(q 10 ) for the trapped modes

in the q10 -plane should apply for surface ducts as well. The predictions

using this approximation are compared in TABLE 2 with the actual results

calculatee by the method of Sections 2 and 3 (and illustrated in Figures 35,

36, 39 and 40).

Notice that TABLE 2 shows no trapped modes for the 65-MHz case, whereas

Figure 35 indicates the presence of a strong ducted field. There is no

contradiction, however, since the trapped modes as defined for the purposes of

TABLE 2 are non-leaky and are essentially unattenuated along the waveguide.

The field contribution evident in Figure 35 is leaky and is attenuated along

the waveguide. It is, however, appreciable at the distance for which the

calculations were made for Figure 35.

Finally, note that no extreme change occurs in the locus of the

eigenvalues in Figures 36, 39, and 40 in the vicinity of Re (q10 ) = 0, as was

the case for elevated ducts. For elevated ducts, it was shown that such a

change occurs between modes that produce fields affected by the ground, and

modes that produce fields unaffected by the ground. However, for surface

ducts, the ground plays a role in the duct itself and, therefore, affects the

trapped waves. This is demonstrated by the fact that the trapped modes lie on

either side of q10  0.
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INFLUENCE OF DUCT HEIGHT

To illustrate the effects of the duct height on the locations of the

roots of the modal equation in q1 0 -space, consider the refractivity profile

shown in Figure 41. This profile (in M-units) is identical to that of Figure

24 except the center of the duct in Figure 41 is at about half the height of

the one shown in Figure 24. The eigenvalues in q 10 -space for a frequency of

449 MHz using the profile of Figure 41 are illustrated in Figure 42. The

corresponding eigenvalues using the profile of Figure 24 are illustrated in

Figure 26.

Comparing Figures 26 and 42, notice that the number of trapped modes

(those near the real axis) is the same. These trapped modes appear at lower

negative values of Re(qj0 ) in Figure 42 than in Figure 26 since, from Equation

205, the values of q 10 at which q11 and q 22 vanish have smaller negative

values in the profile in which the duct height is lower. Although the number

of trapped modes is the same, the number of all other modes (or the density of

the other modes in q 10-space) is significantly smaller for the lower duct

height than for the higher duct height. In addition, there are fewer and less

intense fluctuations in the eigenvalue locus of Figure 42 than in the one in

Figure 26. It is reasonable to assume that, when the duct height decreases to

a point where the elevated duct becomes a surface duct, these fluctuations

would disappear entirely, as was seen to be the case in, say, Figure 40.
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INFLUENCE OF DUCT THICKNESS AND INTENSITY

The propagation frequency of 449 MHz will be utilized to investigate the

effect on the ef*envalue locus of a variation of duct thickness and intensity.

Figures 43 through 48 provide illustrations of:

(1) eigenvalue locations and

(2) modal contributions

for ducts of decreasing thickness and intensity. In each case, the modified

refractivity gradients in each region are the same as those in the profile of

Figure 24. The boundary between region 2 and region 3, however, is lowered

until, in Figure 48, region 2 disappears entirely.

As would be expected, Figures 43 and 48 show that the number of trapped

modes decreases as the duct becomes less intense and narrower. The

fluctuation in the eigenvalue locus also becomes subdued and disappears

entirely when the duct disappears. The highest order modes become

increasingly leaky as the duct strength diminishes. The fluctuation in the

modal contributions to the field also becomes small, so that, in plot (B) of

Figure 48, the inflection in the curve (see arrow in figure), which identifies

the contribution as originating from the second order mode, is hardly

distinguishable. In Figure 48, the lowest order mode from which plot (A) was

constructed was the mode for which Re(q 10 ) is minimum -- this even though it

does not have the lowest attenuation per kilometer (since it does not have the

lowest value of Im(q 10 )). The contribution of the mode with lowest

attentuation per kilometer is shown in plot (C) of the figure.
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r

FREC=449.0 MHZ. H POL

RANGE=500.0 K(m

FS LOSS=139.5 08

*XMTR HEIGHT
-MODE SUM

... I..DUCT

-160,0 -120.00 -:60.00 -40.00
HEIGHT GAINCREL. TO FREE SPACE ,dB)

-400 -0.0 0.0 20.001 40.00 .0

-186 -4.6 -1200 -'1000 -66.00 -66.U

HEIGHT GAIN(REL. TO FREE SPACE ,dB)

Figure 47. Eigenvalues and two of their field contributions for a

refractivity profile with the same refractf.vity gradients

and duct height as the profile of Figure 24, but with duct

thickness 0.05 kmn.
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SECTION 7

ANALYSIS OF DUCTED FIELDS

FIELD SIMULATION BY PARTIAL MODE SUM

In the previous section, it was shown that specific types of propagation

may be associated with different eigenvalues. Thus some eigenvalues will

contribute only to trapped waves within the duct, some will contribute to

leaky (or chordal) waves and some will be associated with multi-hop

contributions caused by reflections from the ground. It was also shown that

the locations of the eigenvalues in q1 0 -space that provide each type of

contribution can generally be identified.

From Equations 67a and 68, the relative field may be written as:

-jp r
n

A = j \ u (z ) u (z ) e (206)
o n n n R n T

where zR and zT are the receiver and transmitter heights, respectively, and

the sum is over the eigenvalues. It will be noticed from Equation 206 that

for each mode, there is reciprocity between the transmitter and receiver --

that is, the result remains unchanged if the transmitter and receiver heights

are interchanged. Also, un(zR) characterizes the influence of the receiver

height to the modal field contribution, and u n(z T ) characterizes the influence

of the transmitter height to the modal contribution. This implies that, if

both zR and zT are heights at which the same type of wave is dominant (e.g.

trapped wave, chordal wave, multip-hop wave), then the dominant terms in the

sum of Equation 206 will be those of the eigenvalues that contribute most to

that type of wave. Thus, if both zT and zR are heights within the duct, the

terms in Equation 206 representing the eigenvalues in region A (see Section 6)

would contribute most significantly to the overall sum. Similarly, if zT and
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zR are both near the ground, the dominant contributions in Equation 206 will

be derived from the eigenvalues in region D.

If z T is a height at which a particular type of wave is dominant, and zR

is a height at which a different type of wave is dominant, then the

significant terms in the sum in Equation 206 would be those for the

eigenvalues characterizing each of these types of waves.

The above considerations imply that, for certain specific propagation

circuits of interest, it is possible to describe the relative fields by a

relatively small number of eigenvalues. Since it is often possible to

localize the region of the q10-plane in which these eigenvalues lie (using the

methods described in the previous sections), a significant saving in

computation time may be realized.

Illustrating the point made above, consider the propagation in the duct

in Figure 24. At 2201.7 MHz, the resulting eigenvalues were illustrated in

Figure 27. A portion of these eigenvalues is shown in Figure 49. The

location of the eigenvalues is independent of the transmitter and receiver

heights. Assume the receiver and transmitter are both located within the

duct. Then the dominant contribution to the field will derive from the

eigenvalues close to the real axis in Figure 49. Figure 50 compares the field

using all modes for which Re(q 10 ) < -77 with the total field using all the

modes shown in Figure 27. It is seen that within the region of interest

(i.e., within the duct), there is good agreement between the two cases.

However, outside the duct, a large discrepancy between the two results is

apparent, since eigenvalues that contribute to the regions outside the duct

were not included in the partial mode sum. Figure 51 compares the field using

all modes for which Re(q 10 ) < -75 (i.e., more modeF than were used in Figure

50) with the total field using all modes. The agreement within the duct is

even better than in the former case, and the field above the duct using the

partial sum is closer to the total field than is the partial sum result in

Figure 50.
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DIFFERENCES BETEEN MODE AND POWER SUMS - EFFECT OF PROFILE NORMALIZATION

In Section 5 it was seen that, in some cases, the "power sum" result

(Equation 67d in Section 2) differed greatly from the "mode sum" result

(Equation 67c). This difference was most obvious in Figures 22 and 23 in the

region above the duct, and was apparently caused by extreme destructive

interference between individual modal contributions that are significant at

those heights. From the measured data shown in these figures, it appears that

the power sum result is more realistic than the mode sum result. Since the

mode sum is theoretically more accurate than the power sum, the question

arises as to the reason for the discrepancy between the measurements and the

mode sum results.

Skillman and Woods (Reference 9) suggested that the source of the problem

might be a perturbation caused by horizontal refractivity inhomogeneities, or

by inadequacy of the mathematical model. The fact that the problem seems to

occur only at high altitudes might point more to the latter explanation.

Pekeris (Reference 4) showed that the "earth-flattening" approximation used in

this mathematical model (in which the curvature of the earth was taken into

account by modifying the refractivity profile) would become less accurate as

the altitude increases. This inaccuracy would affect both modal amplitudes

and modal phases. Since phases would generally have a more dramatic influence

on the calculated field than small differences in amplitudes, the solution

that strictly accounts for these phases would be expected to go awry prior to

the solution that assumes phase incoherency. This would explain the reason

for the power sum solution providing predictions in Figures 21 and 22 that are

superior to the mode sum predictions.

To illustrate the effect on the relative field strenqth of small

differences in modal phases, it is interesting to compare the relative field

strength results for the case of a "normalized" refractivity profile (see

Section 3), with the case of an unnormalized refractivity profile. As
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discussed in Section 3, the principal computational difference between these

two cases appears in the value of p n in the exponent in Rquation 206. From

Equation 94, for the unnormalized profile:

q10(n)

P kJ1-Htan a - k ) 2/3 (207)

(t an 07TT

while for the normalized profile,

(n)P ~q 10(28

n ko 2/3 (208)

Since Itan ali << 1, the difference between Pn as defined by Equation 207 and

Pn as defined by Equation 208 is very small. Figure 52 provides results using

the normalized refractivity profile of Figure 24 and using a corresponding

unnormalized profile for a frequency of 449 MHz. In the unnormalized

refractivity profile, the modified refractivity at the ground is taken as 300

(instead of zero). The power-sum results for both the normalized and

unnormalized profiles are identical. However, these profiles produce

different results using the mode sum. Note also that the results differ only

in the region above the duct, but are the same within and below the duct.
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EFFECT OF TRANSMITTER HEIGHT - SINGLE DUCT

Elevated Duct

To investigate the effect of the transmitter height on the relative field

strength, the elevated duct profile of Figure 24 will be used for a frequency

of 2201.7 MHz. The mode-sum and power-sum results are presented in Figure 53

in order of decreasing transmitter height (indicated by an asterisk in the

left portion of each plot.) In Figures 53a and 53b, the transmitter is

located above the duct. The transmitter is within the duct in Figures 53c,

53d, 53e, and 53f. In Figures 53g and 53h, the transmitter is below the duct.

When the transmitter is above or in the duct, the fields in or above the

duct are relatively large. The optimum coupling of energy into the duct

occurs when the transmitter is near the duct center. When the transmitter is

above or in the duct, the fields are greatest within the duct. When the

transmitter is below the duct, field enhancement due to the presence of the

duct is negligible or absent entirely.

By reciprocity, the results cited above would hold if the receiver and

transmitter were interchanged. It may therefore be concluded that, under

suitable duct environments (i.e., environments in which the minimum trapping

frequency of the duct is less than the transmission frequency), the duct

serves to significantly enhance the fields when both the transmitter and

receiver are in or above the duct. If either terminal of the propagation

circuit is below the duct, the resulting fields would not be significantly

enhanced by the presence of the duct.

Surface Duct

The fields in a surface duct will now be considered for different

transmitter heights. The duct profile of Figure 34 will be used for
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a frequency of 3300 MHz. Fiqure 54a shows the fields calculated using the

mode-sum series for three transmitter heights: one outside the duct and two

within the duct. Figure 54b shows the corresponding fields using the power

sum solution. Notice that, contrary to the case of elevated ducts, the field

is weaker in the duct than above it when the transmitter is above the duct.

This would be due to the fact that, when the source and observer are both

above the duct and separated by a distance of 111.2 kin, they are within line

of sight of each other.

In Figures 54a and 54b, the transmission is taken as being vertically

polarized. The results for this case were found to be identical to those

using horizontal polarization.

1
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Figure 54a. Mode sum fields calculated using the refractivity profile of
Figure 34 for different transmitter heights.
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Figure 54b. Power sum fields calculated using the refractivity profile of
Figure 34 for different transmitter heights.
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EFFECT OF TRANSMITTER HEIGHT - DOUBLE DUCT

The effect of transmitter height on relative field strength will now be

investigated for the two-duct refractivity profile illustrated in Figure 32

for a frequency of 449 MHz. The mode-sum and power-sum results are presented

in Figures 55a through 55d in order of decreasing transmitter height. In

Figure 55a, the transmitter is above the upper duct; in Figure 55b, the

transmitter is within the upper duct; in Figure 55c, the transmitter is

between the upper and lower ducts; and in Figure 55d, the transmitter is

within the lower duct. The effect of each duct (or lack of effect) is obvious

in each figure. It is clear that the field is greatest within each duct when

the transmitter is located within it. From Figures 55c and 55d, it is seen

that, when the transmitter is below the upper duct, the field in the upper

duct is similar to the field that would be expected if the upper duct were not

present. The lower duct, however, serves to enhance the field in these cases.

The conclusions drawn for the single duct environment may be generalized

to the two-duct environment: Each duct will significantly enhance the fields

when both the transmitter and receiver are in or above it. If either terminal

of the propagation circuit is below one duct (or both ducts), then the

resulting field will not be enhanced by the presence of that (those) ducts.
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EFFECT OF DUCT THICKNESS AND INTENSITY

The propagation frequency of 449 MHz will now be utilized to investigate

the effect on the calculated fields of a variation of duct thickness and

intensity. In each case considered, the modified refractivity gradient in

each region is the same as that in the profile of Figure 24. The variation in

duct thickness and intensity is obtained by lowering the boundary between

region 2 and region 3 until region 2 disappears entirely. This is

accomplished for three different transmitter heights in Figures 56, 57 and 58,

respectively. In Figure 56, the transmitter is located above the duct, in

Figure 57 the transmitter is located within the duct, and in Figure 58, the

transmitter is located below the duct. In each figure, relative field

calculations are presented for different duct thicknesses (and intensities).

In Figures 56 and 57 (in which the transmitter is above the duct and

within the duct, respectively) it is observed that, for the first two or three

duct thicknesses considered, the maximum field within the duct remains about

the same. The fields in the duct fall off rapidly for .naller ducts. In

Figure 58, the fields are very similar for all finite duct thicknesses, but

are appreciably smaller in the limit of an absence of the duct.

The discrepancy in the figures between the mode-sum and the power-sum

results for the smaller duct sizes was not investigated.
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Figure 56. Fields calculated using a refractivity profile with the same

refractivity gradients and duct height as the profile of
Figure 24, for different duct thicknesses (transmitter
above the duct).
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Figure 57. Fields calculated using a refractivity profile with the same
refractivity gradients and duct height as the profile of
Figure 24, for different duct thicknesses (transmitter

with the duct).
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Figure 58. Fields calculated using a refractivity profile with the same

refractivity gradients and duct height as the profile of
Figure 24, for different duct thicknesses (transmitter
below the duct).
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EFFECT OF FREQUENCY

The effect of frequency variation on the calculated field will now be

investigated for the elevated duct profile of Figure 24. Measurements

documented by Skillman and Woods (Reference 9) for a duct environment similar

to this indicated that the relative field variation with height was similar

for frequencies 449.2 and 2201.7 MHz. Their results were illustrated in

Section 5. They succeeded in predicting the results for frequencies of 149.3

and 449.2 MHz using a computer program developed by Pappert and Goodhart

(Reference 5).

In Figure 59, calculated results are presented for frequencies 149, 449,

2201.7 and 10000 MHz. The results for the 449 and 2201.7 MHz cases were

compared in Section 5 with measurements documented by Skillman and Woods

(Reference 9). It is seen here that not only are the 449 and 2201.7 MHz

results similar to each other, but they are both similar to the results for

10000 MHz. This bears out the suggestion of Skillman and Woods that, in duct

environments, it might be possible to utilize calculations at lower

frequencies to determine relative fields at higher frequencies.
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SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

CONCLUS IONS

1. A reliable computer model, based on a waveguide mode

formulation, has been developed for calculating beyond-line-of-sight

electromagnetic fields in a horizontally stratified tropospheric duct

environment.

2. The model is capable of evaluating fields for higher elevated

ducts and higher frequencies (i.e., through SHF) than were previously feasible

in other available models, which had numerical difficulties that precluded

computation of all significant eigenmodes of the system.

3. The types of numerical difficulties encountered in other models

were eliminated by the use of a unique mathematical formulation that

a. Assures linear independence (Equations 104 to 106), even in

a "numerical sense", of the homogeneous form of the governing differential

equation; and

b. Provides flexibility for judiciously choosing the

particular srlution (Equation 189) to the inhomogeneous form of the governing

differential equation.

4. The model methodically and efficiently determines all

significant eigenvalues (Section 3) and corresponding fields (Section 4) for

elevated and surface ducts at all frequencies through SHF.

5. Criteria have been developed (Equation 205) for associating

specific types of field contributions with eigenvalues in a specific portion

of the eigenvalue locus. These criteria have the potential for increasing the

computational efficiency of the model in certain circumstances.
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6. The model has beea verified by comparing its predictions with

measurements in both elevated and surface duct environments (Section 5). It

is the only known computer model that provides predictions which agree within

a few dB with field strength measurements performed in an elevated duct

environment at frequencies as high as 2201 MHz (Figure 23).

7. The model is deemed to be a valid tool for predicting and

s-udying electromagnetic fields in a tropospheric duct environment.

RECOMMENDATIONS

1. Measured data on the probability of occurrence of ducts of

various characteristics in various geographical locations should be analyzed

and used in the deterministic model in a manner that would provide statistical

loss values. The results should specify the probability of loss as a function

of geographical locations and seasons. These statistical loss values should

be used to revise the long-term power fading subroutine used in ECAC

propagation models.

2. The model should be extended to predict loss values at distances

within line-of-sight.

3. The model should be extended to account for the effect of

obstructions in front of the antenna.

4. The model should be extended to allow a nonhomogeneous

horizontal refractivity.
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APPENDIX A

ASYMPTOTIC BEHAVIOR OF h1 (q) AND h2 (q) AND F(q) IN THE UPPER

HALF OF THE q-PLANE

Values of the real and imaginary parts of h in the complex q-plane are

shown in Figures A-i and A-2, respectively. The corresponding values for h 2

are given in Figures A-3 and A-4. When IqI is small, hI and h2 are both of

order unity, as must be F(q), defined from Equation 98 as:

4

F(q) - h 2 (q) - e h (q) (A-1)

jhl, 1h21 and JFl only become exponentially large or small when jqj is

large. These functions may therefore be studied using their asymptotic

expansions. These asymptotic expansions will be defined according to

Reference 14. It is convenient to define the following:

4 -51j/12 m -3m/2
u(q) = Aq e [1 + E (-j) C q (A-2)

m=1 m

- - 5Trj/12 m -3m/2
v(q) = Aq 4 e (1 + E (j) C q (A-3)

m=I m
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2/3 jq3/2
f(q) = e 1  q (A-4)

2 .3/2

g(q) = e 3q(A-5)

where

1 1 1

A =2 3e 6 r 2 = 0.853667218838951

and

C (9-4) (81-4) [ 9(2 rn-i) 2- 4]
m 24m 3m M

178



ESD-TR-81-102 Appendix A

Then:

h (q) - f(q) u(q), 0 < arg(q) < n (A-6)

and

0 , 0 < arg(q) < 7r/2 (A-7a)

h 2(q) -g(q) v(q) +

e47r3jq/3 f(q) u(q) , < arg(q) < 7t

(A-7b)

The reason that different asymptotic expansions are needed in different

regions of the complex plane (as in Equation A-7) is the fact that, although

h 1 (q) and h 2(q) are analytic for all finite values of q, these functions have

branch cuts at infinity. Since the asymptotic expansion is essentially an

expansion about a point at "infinity", the branch behavior becomes apparent in

the asymptotic expansion. As discussed in Reference 14, Equation A-7a is

valid in the region shown in Figure A-5a, while Equation A-7b is valid in the

region shown in Figure A-5b. Th avoid approaching the branch cut, it is

convenient to use the region division used in Equation A-7.

From Equations A-I, A-6 and A-7:

Se41tj/3 f(q) u(q), 0 < arg(q) < (A-Ba)

F(q) g(q) v(q) -

0 2 < arg(q) < w (A-Sb)
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Im(q) IM(q)

Re(q) -
_  

-

/ 3

(a) (b)

Region of validity of Region of validity of
Equation A-7a Equation A-7b

Figure A-5. Regions of validity of asymptotic expansions for h 2 .

The exponential behavior of hi, h 2 and F will enter through the variables

f and g as defined by Equations A-4 and A-5. Letting:

q = p j o (A-9)
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where p and 0 are real, would produce:

3/2 3/23
q p (cos - e + j sin .1 8) (A-10)

so that

eJ e j 6

f = ae, q ye (A-11)

where

2 p3/2 sin 3
3 2 2 3/2 3

-- e , = s3 2

2 03/2 sin 3 _3/2 3 (A-12)

y =2e ' - p cos - 6

and a, , y and d are real numbers. Since the modulus of ej8 and ej6 is

unity, the magnitude of f and g may be obtained from a and y, respectively.

For a particular value of p = jqj, a and y are determined by

0 = arg (q). Whether a and y are large or small would depend on the sign of

the exponents in equation A-i2, which in turn depends on the sign of
3

sin -1 0. It is clear, though, that when Q is exponentially large, y is
2

exponentially small, and vice versa. Now:
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sign (sin 81 ) 0 0<e6<2nr/3 (A-13)

where only the values of 0 < 6 < 7r are considered since only the upper half of

the q-plane is of interest. Therefore, for p large:

CL << 1, Y >> 1, 0 < 6 <27
3 (A-1 4)

S 1, y«1, 2,r

or

fi << 1, IgI >> 1, 0 < a < 21T
3 (A-i15)

Ifi >> 1, I << 1, 21< a <N
3

Therefore, fron Equations A-6, A-7 and A-8,

Ih 1(q)l <c< 1, 0 <~ arg (q) <21

(A-1 6)

Ih 2(q)l >>1 0 < arq (q) < ir (A-i17)
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IF(q)l >> 1, 0 < arg (q) < -1

(A-18)

F(q)l << 1, 21r < arg (q) < T

where, in Bquations A-7b and A-8a, the fact was used that the sum of an

exponentially large term and an exponentially small term is expontentially

large. The inequalities in the above equations should be interpreted in terms

of the "potential" for being much less than or greater than 1, since it is

clear that as the boundary 0 = arg(q) + 2w/3, the inequality would not

necessarily hold.

From Equations A-16, A-17 and A-18, it is seen that Ih1 (q)I and Ih2 (q)I

may both be exponentially large simultaneously in a portion of the upper half

plane, whereas h 1 (q) and F(q) cannot be large simultaneously in this region.

This fact prompts the use of the functions K (q) = h (q) and K 2(q) = F(q) in

the solution to the Stokes equation.
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APPENDIX B

EVALUATION OF THE MODAL DETERMINANT

GENERAL

In searching for the roots of the modal determinant, this determinant

must be evaluated many times. An efficient method for accomplishing this is,

therefore, required. Standard elimination methods require many summing

operations which should be avoided as much as possible if there are large

differences in magnitude among the elements of the determinant. The

evaluation method should also take maximum advantage of the presence of zero

elements in the determinant. A method is described below to accomplish

this. This will be done first for a simple 5-by-5 matrix. It will then be

generalized to the N-by-N case.

5-by-5 MATRIX

When there are three atmospheric layers (L = 3), the modal determinant is

given by Equation 136 which is written here as:

a1 a1 0 0 0
a11 a12
a21 a22 a23 a24 0

a a a a 0(Bi
JAI 31 32 33 34 (B-1)

0 0 a43 a44 a45

0 0 a53 a54 a55

It is desired to evaluate this determinant.
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The determinant in Equation B-i can be written as a linear sum of

cofactors:

JAl = a M(a 11) -a12 M(a 12) (B-2)

where the fact that a13 = 14 = a15= 0 was used, and the determinants of the

minors M(a 11) and M(a 1) are:

a22 a23 a24 0

a3 2  a33 a34 0

M(a 1 1 0 a43 a44 a45
0 a53 a54 a55

0 a22 a23 a24
0 a aa

0 a 3 2  33 a 34

a45 0 a43 a4 4  (B-3)

a55 0 a53 a54

and
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a2 1  a 2 3  a 2 4  0 a 2 1  0 a 2 3  a 2 4

a 31  a33 a34 0 a31 0 a33 a34

M(a) 0 a43 a44 a = 0 a45 a43 a44

0 a53 a54 a55 0 a55 a53 a55

(B-4b)

The final determinants in Equation B-4 were obtained by permuting 
the

columns of the respective matrices.

Consider a system of four equations in four unknowns:

Bu = C 
(B-5)

where B is the known, non-singular matrix formed from A as the minor of the

a 15 term:

a21 a22 a23 24

31 a32 a33 a34 ~(B-6)

B M(a 15) 0 0 a43 a 44

0 a53 a 54)

* is the unknown vector

u 1

u 2

(B-7)

4
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and C is the known free vector formed by the negative of the last column of A

excluding the first element:

0
0

C = -a (B-8)

-a55

Using Equations B-6 to B-8, the solution of u1 is given by:

0 a22 a23 a24

0 a32 a33 a34

a45 0 a43 a44 (B-9)

a55 0 a53 a54 + Im (a11)1
Ul IM (a15)

21 22 23 24

a a a a
31 32 33 34

0 0 a43 a44

o 0 a53 a54

and u 2 is given by:

a21 0 a23 a24

a31 0 a33 a34

0 a4 5  a43 a44 (B-10)
0 a55 a 53  a54 IM (a 12)

u2 IM (a 15) - IM (a 15)1
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From Equations B-9 and B-10:

IM(a 1 1 )1 = IM(a1 5 )1 u1  (B-11)

and

IM(a 12)I = - IM(a 15)I u 2  (B-12)

so that Equation B-2 may be written:

JAI = IM(a )I (a U1  + u 2 ) (B-13)
15 11 i 2u2

From Equation B-6, it is seen that the determinant of M(a1 5) is simply

the product of the determinant of the 2-by-2 submatrix in the upper left

corner and the determinant of the 2-by-2 submatrix in the lower right

corner. That is:

a21 22 a43 a44
IM(a15)I =(B-i14)

a31 a32 a53 a54

Substituting Equations B-6, B-7, and B-8 in Equation B-5 yields the

system of equations:
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a21 u1 + a22 u2 + a23 u3 + a24 u 4 = 0 (B-15a)

a31 u, + a32 u 2 + a33 u 3 - a34 u 4 = 0 (B-15b)

a43 u3 + a44 u 4 = -a45 (B-15c)

a53 u3 + a54 u4 = -a55 (B-15d)

It is clear from Equations B-15 that the values of u 3 and u4 may be obtained

by solving Equations B-15c and B-15d alone:

a45 a44

-a55 a54

u = (B-16)

a43 a44
a53 a54

a -a
43 45

a -a53 55

4 (B-17)
a4 3  a44

a a
53 54

where it is assumed that the denominations have non-zero values.
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Equations B-16 and B-17 may now be substituted into Equations B-15a and B-15b

to obtain:

w
a2 u 1 +a2 u 2  =I

21 1 22 2 a4 3  a 44 (B-18)

a a3a53 a54

w2

a1 u +a2 u2 = a5a3a44 (8-19)

where

a45 a44 a43 a45
W a a a + a (B-20)

1 a 55 a54 24 a53 a 5 5

and

a 4 5  a44 a 4 3  a 4 5  (B-21)

2  33 a55 a54 34 a53 a55

Equations B-18 and B-19 may be easily solved to yield:

w a
1 22

w a

2 32 (B-22)
IIM(a15)9
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a21 w1

ua31 w2 (B-23)
"2 IM(a157F

where Equation B-14 was used.

Substituting Equations B-22 and B-23 in Equation B-13 results in:

AIl 22 + a a21 1i (B-24)
11 w2 a 3212 a 31 w2

where w 1 and w., are given by Equations B-20 and B-21, respectively.

N-by-N MATRIX

The method utilized above for a 5-by-S matrix will now be generalized.

Consider the N-by-N matrix given by:

a11 a12... ... ..... ..... a1N

a21 a22.. ..... ..... ..... a2N

A =(B-25)

a a
N1 N2.......................NN)
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From the definition of the determinant of a matrix in terms of a cofactor

expansion:

N i+1-
AlI (-1) a IM (a )I (B-26)

Define the following permutation operation on the columns of a square

L-by-L matrix E: Let P C E) be the matrix formed by the operation of moving
a

columns a1, a+i, a+2, .. . ,L-1, L so that column L becomes column a, column

a becomes column a-i1, column a-i1 becomes column a+2, etc. Now:

I? L (E) I = (_,L-a JEl (B-27)

In particular, let

E = M(a i)(-8

so that L =N - 1, and let a =i. Thus:

El = (-1) N1iI P.iN- (E)l (B-29)

Then

AI N E (-1) +1a (-I) N--iI. - (M(a ) l+ (-1)N la IM(a )I
i=1 ii ii IN iN

(B- 30)

= (-1) N a P (-1Ma )I+ (-1)NI a IMa )I
i= i iii iN iN
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M-) k'konS idet thet systeIM kt N4-1 equaltionls .1nd N-1 unknowns

where, 13 t t-lit known matri f ormedi from A as the minor at . aIN

31 323, N- I

14 MGI
I N

N I 'N2 'N, N-I

n .,the unlknokwn ec vtoktr

U . (B-33)

N-1

and C is the known tree vector termed by the neqative of the last Column of A

*'xtcl dinqi the first is 1.ment:

!N

-- 34
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It is known that, if the matrix B is non-singular, the solution for ui is

obtained as:

i(i) 1
l BI

so that

IB (i) = U. IBI , 1 < i < N-i (B-36)

where B(i) is the matrix obtained by replacing the ith column of B with the

free vector C. But some thought would show that:

IB(i), = - IPi N - 1 (M (a1i))1, 1 < i < N-i (B-37)

Using Equations B-32 and B-37 in Equation B-36 leads to:

N-1IP. (M(a ))I = - u IM(a )I, 1 < i < N-I (B-38)
Ii i IN

Substituting Equation B-38 into Equation B-30 yields:

N N-i N+1
IAI = (-1) {- [ a u IM(a )I} + (-1) a IM(a )I

i=I Ii i iN iN iN

N+1 N-I
- (-1) IM(a l{a + I a u}

iN iN i=I ii i
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or

N+I N

(AI = IM(a )j a u, u (B-39)
IN i=I Ii i N

APPLICATION

At first glance, Euation B-39 looks more involved than its equivalents

in Equations B-26 and B-30. Indeed, the form of Equation B-39 contains the

unknowns in the vector u, which first must be solved through Equation B-31

before a solution for JAI is obtained. Nevertheless, there exist matrices for

which Equation B-39 represents a more efficient method for evaluating JAI than

does Equation B-26. Such a matrix would be one for which B = M(a IN) would

be relatively simple to evaluate even though JA1 is not.

Consider, for example, the N-by-N matrix A for which the submatrix B

M(alN) has the form illustrated in Figure B-i. About the diagonal

of M(a IN) are 2-by-2 and 3-by-3 submatrices which are each (excePt for those

on the array boundary) flanked below and to the left by zero elements. There

are, say, K such submatrices. The kth such matrix k will have Nk-by-Nk

elements, so that:

K
E N N-I (B-40)

k=1 k

Define the determinant of M as:
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The rectangular matrix consisting of the elements of B to the right of Mk will

be called the matrix F ,k = 1,2 .... , K-i. The elements of each Fk may be

zero or non-zero. Fk will have Nk rows and Nk columns, where:

-- K
N = Z N (B-42)
k i=k+1 i

Now define the subvectors u (k) of the unknown vector u as that portion of

u corresponding to the matrix Fk (see Figure B-i). u (k) will contain Nk

terms. Its first term will be the nI(k) element of u, and its last term will

be element number nF(k) of u, where

k-1
(k) E N , k > 1

n = 1 + i=I i (B-43)
I

0 , k = 1

and

(k) k
n = E N (B-44)
F i=1 i

Similarly, define the subvectors C( k) of the free vector C.

Also define complementary subvectors u of the unknown vector u.
- (k)
u is the vector consisting of all terms in u beyond those which make up

u (k) Thus the first term in (k) will be the term number nI(k) of u and

the last term will be term number N-i of u, where:
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-(k) (k)
n I  = nF + I (B-45)

It is now clear that:

K
IBI = IM (a )I = R D (B-46)

iN k=1 k

Now the subvector u(K) may be solved using the equation:

M u(K) = (K) (B_47)

so that

(K) IMK (i )
u. - ( B-48 )

i D
K

where, again, M (i) is the matrix obtained by replacing the ith column of M
K K

with the vector C(K).

(K-I)
The subvector u may be solved from the equation:

M_ u(K-1) C(K - 1) - F u
( K - )

K-1 K-i (B-49)

(K-i)

so that
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(K-I) IMK-1i
u - (B-50)

K-I

where M K_(i) is the matrix obtained by replacing the ith column of MK-1 by

the vector The kth subvector u ( k ) may now be solved for through the

equation:

(k) (k) - (k)= - (k)
Mk u = C ~Fk u (C B-51)

so that

(k) _Mk____

u D (B-52)

This procedure may be continued until a solution is obtained for the subvector

u ( 1 ) . The values of ui so calculated may be used along with Equation B-46 in

Equation B-39 to obtain the determinant of A.

SINGULAR SUBMATR IX

The effect of one of the submatrices (say M. ) being singular is now

considered. In solving this, an investigation is made into the manner in

which D. enters the final expression for A when D. is small.

It is clear that D. would not enter the successive calculations describedJ

in Btuations B-51 and B-52 until the value of u ( j ) is to be evaluated. Then:

.(i) .(j)
u(i) 1 v.
. - D. - D(B-53)

D. D.
J J
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where the vector v~1)isdfn:

v (j I I(B-54)

IM. (2)l
Jm (3)

(N.)

The equation for u~-)is then:

m u(j-1) - c(j1) F. - (j-1) (B-55)
j-1i-

But

u(j4-1) D.
-(j-1) jl

u -

(K)u(K

1D. u(j4-1) 1 - (j-1) (-6

D. u0.+2

0. U (K)
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Substituting this into Equation B-55 yields:

M I  u j - 1  1 I D C ( j - l )  - F v (j-l)} (B-57)
j-1 D. j -

JJ

vanish, as will all elements in the product F, v containing the factor
j- 1

D. But this is the result that would be obtained if:
j

(J-I) (j+1) (j+2) (K)= U = U 42) = . -= = 0

(j) (j ) (B-58)
U

D 3

Each term in the free vector in Equation B-57 will therefore be inversely

proportional to D. * In solving Equation B-57, each element of the vector

u (j-) will likewise be inversely proportional to Dj. The same reasoning may

(j-2) (j-3) (1)be used for u , u (
, u to show that each of these subvectors

will be inversely proportional to D., and that the result obtained requires
(k) (i)

ignoring the subvectors C and u (
, j+1 < k < K, in comparison to the other

terms of the free vector. Using Equations B-58 and B-46 in Equation B-39

yields:

N+1 K N
J = (-1) 11 D E a u

k=1 k i=1 1i i

(B-59)

N+1 K N
l(-I) D E a u

k=1 k i=1 ii i
k*j
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where

/ (1)
u (2)

= ( 1(B-60)

U tj-)

V(j) /

0

in which the factor D. in the numerator and the denominator have been

cancelled, and D. does not appear in Equation B-59. The unknown
(i)

u , < < i < j-1 are assumed to be obtained using the successive method

described by Equations 27 and 28, using:

C = 0

(k) (B-61)
u = 0, j + 1 < k < K

and with u(j ) replaced by v (j )
. quation B-59 is the final value for the

determinant when the jth submatrix M. is singular.J

In the event that both M. and M. are singular, where a is a positive
J J-a

integer, then the resulting value of JAI would be:

N+1 K N
AI = (-1) 11 D E a u

k=1 k i=1 Ii i (B-62)

k*j, j-a

where
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where

u(2)/u
i ' U("2 ) (B-63)

U

0

0

(k)

and the u k 1 < k < j- a - 1 are obtained as described above. lite

extension to any number of singular submatrices is straightforward.

PARTICULAR CASE

Of particular interest will be the matrix A with:

a = 0, N + 1 i < N (B-64)

a = 0, N -N K + 1 < i < N (B-65)

and with

(F k )C~ F0 N kl (B-66)
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N
N+1 1

JAI = (-_) IM(a )I a u (B-67)
IN i=1 ii i

From Equation B-65:

c( 1) 12) = (K ~1)

S...... 0 (B-68)

and from Equation B-66, the submatrix M(a 1) is as shown in Figure B-2. The

non-zero portion of the Fk will be called F k  and will have Nk rows and

columns.

The first step in the solution procedure is determination of the elements

of u(K) from Equations B-47 and B-48 to yield:

u (K) (K) (B-69)
D

K

where again v(K) is the vector, the ith term of which is the determinant of

the matrix formed by replacing the ith column of MK by the free vector C(K) .
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I
F

mlm

II
F L.-

M 2  1 F2

_ I iI-k

Mk 
Fk --

M K

Figure B-2. Submatrix M(a N)
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From Equations B-49 and B-68, the elements of u(K-i ) are given by:

(K-i) - (K-I) I (K)M U K -  
= -F u--

K-i K-i K-i

F1 v (K) - (K-i) 
(B-70)

K-i D DK K

This has the solution:

(K-i) v(K-1)
u - (B-71)D D

K K-i

where now v(K-i) is the vector, the ith term of which is the determinant of
-(K-i)the matrix formed by replacing the ith column of MK-I by the vector C

The elements of u (k) are given by:

(k-1)
(k) ' (k) v

M u = -F u = -F
k k k D D D . . D

K K-I K-2 k-1

(B-72)
(k-1) - (k)v C

=-F

k K K
I D 1 D

i =k-1 i i =k-1 i

with the solution:
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(k)(k) vu = (B-73)

K
11 D

i =k i

The solution of u() will similarly be given by:

(1)(1) v
u = (B-74)

K
11 D

i=1 i

Substituting Buation B-46 and B-74 into Elpiation B-67 yields:

NN+1 1 (1)
JAI = (-1) Z a v (B-75)

i=1 Ii i

Thus it is seen that, for this particular form of the matrix A, the

determinants of the submatrices do not enter into the final expression for

I AI. It follows that Equation B-75 also holds when any of the submatrices is

singular.

EXAMPLE - FIELDS IN HOMOGENEOUS STRATIFIED LAYERS

Consider L layers of atmosphere over a ground, with each layer

homogeneous and characterized by a parameter a. In acoustics, this parameter

might be the medium density. In electromagnetics, this might be the

permittivity e. A field quantity Ei in the ith layer may be written as:

E (r, z) = f 'i (ai k, z) f (k,r) dk (B-76)
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where f is a known kernel and the integration is over a closed contour in the

complex k-plane. Assuming the quantity Ifi satisfies a linear second-order

differential equation, it may be written as:

IFi (a.,k,z) = Ai h (a ,k,z) + B. h 2(a ,k,z) + 6. g(aik,z,z T ) (B-77)1. 3 i 2 iz lp i

where

h and h2 are linearly independent functions,

g is a Green function, which is a particular solution of the governing

differential equation that accounts for a source at the location

z = z located in the pth layer,

ip is the Kronecker delta function.

The unknowns A. and B. may be found by solving the system of linear equations

representing the boundary conditions on the Y. and T E - 8. /9z at the layer

interfaces ( z = z., 1 < i < L-1 ) and at the ground, ( z = z ) and the

radiation conditions at z + + -. For L = 4 This system will have the form:

A1 hi(q 1 0 ) + B1 h2 (q 1 0 ) = 0

A, h1 (q 1 1 ) + B, h2 (q1 1 ) - A 2 hi(q 21) - B2 h2 (q21 ) -f

A, hf(q 1 1 ) + B1 h2(q1 1) - A2 h(q 2 1 ) - B2 h2(q2 1 ) - f 2

A2 hi(q 2 2 ) + B2 h2 (q2 2 ) - A3 hi(q 3 2 ) - B3 h2 (q3 2 ) f3

A2 h(q 2 2 ) + B2 h2(q 2 2 ) - A3 h(q 3 2 ) - B3 h2(q 3 2 ) f4

A3 h2(q33 ) + B3 h2 (q33 ) - B4 h2(q43) = 0

A3 hl(q2 3 ) + B3 h(q 3 3 ) - B4 h2(q43 ) = 0

(B-78)

where h (q..) h7 (a0,k,z,), j=i, i+1, i > 0, h (q ) h(q1) - Gh (q1),
m 3i m I I m 10 m 10 m 10

where G is a function of k and the ground parameters, and it has been assumed

that p=2. The fi are functions of k. Equation B-76 may be evaluated using

residue theory, where the poles of TYi are the values of k at which the

determinant of the above system of equations vanishes. When the roots of this
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determinant are evaluated numerically, the determinant must be evaluated many

times, thus making an efficient means for such evaluation very useful.

The matrix has the form:

a 1  a 12 0 0 0 0 0

a a a a 0 0 0
21 2 2 23 24

A = 31 a 32/ a33 34
0 0 /a4 3  a44) a45 a 46 0

0 0 (a5 3  a54) a55 a56 (B-79)

0 0 0 0 (a6 5  a66 a67

a0 0 0 7 a77)

This matrix has the form of the matrix in Figure B-2, and the evaluation of

its determinant may be accomplished using the algorithm described above. The

total number of multiplication operations required is on the order of SK where

K is the number of 2nd-order submatrices. In the example above, K= 3, so that

the number of multiplication operations is 24, or about the number of non-zero

terms in the matrix. This compares with N! for the case of expansion of the

determinant in cofactors, which, for the above example, would be over 5000.

In the event the submatrices were of order 3, then the number of

multiplication operations would be on the order of 45K. If K= 2, in a 7-by-7

matrix such as Equation B-79, this number would be 90, which still is small

compared with the 5000 operations required to evaluate the determinant of a

7-by-7 matrix using a cofactor expansion.
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